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Abstract. Unbounded model checking methods based on Boolean sat-
isfiability (SAT) solvers are proving to be a viable alternative to BDD-
based model checking. These methods include, for example, interpola-
tion based and sequential ATPG-based approaches. In this paper, we ex-
plore the implications of using abstraction refinement in conjunction with
interpolation-based model checking. Based on experiments using a large
industrial benchmark set, we conclude that when using interpolation-
based model checking, measures must be taken to prevent the overhead
of abstraction refinement from dominating runtime. We present two new
approaches to this problem. One is a hybrid approach that decides heuris-
tically when to apply abstraction. The other is a very coarse but inex-
pensive abstraction method based on ideas from ATPG. This approach
can produce order-of-magnitude reductions in memory usage, allowing
significantly larger designs to be verified.

1 Introduction

Model checking [9,26,7], which is a widely used formal verification technique,
is traditionally implemented with Binary Decision Diagrams (BDDs) [6]. Due
to recent advances in tools that solve the Boolean satisfiability problem (SAT),
formal reasoning based on SAT is proving to be an effective alternative to BDDs.
At the core of these algorithms is Bounded Model Checking (BMC) [5], where
a system is unfolded k times and encoded as a SAT problem to be solved by a
SAT solver. A satisfying assignment returned by the SAT solver corresponds to
a counterexample of length k. If the problem is determined to be unsatisfiable,
the SAT solver produces a proof of the fact that there are no counterexamples
of length k. BMC, while successful in finding errors, is incomplete: there is no
efficient way to decide that a property is true.

Nonetheless, there are many Unbounded Model Checking (UMC) techniques
that make use of SAT-based BMC in some way (see [25] for a comprehensive
survey). Two methods, proof-based [23] and interpolation [22], were found to be
the most robust in a recent experimental study [1] that compared many SAT-
based UMC techniques. The proof-based algorithm is an iterative abstraction
refinement method that typically uses a traditional BDD-based model checker
to prove properties of the abstract models. It starts with a short BMC run
and if the problem is satisfiable then an error has been found. However, if the
problem is unsatisfiable, the resulting proof of unsatisfiability is used to guide



the formation of a new conservative abstraction. The algorithm terminates if the
BDD-based model checker proves the property on the abstraction; otherwise the
length of the counterexample generated by the model checker is used as the next
BMC length.

The interpolation-based model checking algorithm is a purely SAT-based un-
bounded model checking method that does not rely on abstraction refinement,
though like abstraction methods, it tends to work well on properties that are lo-
calizable, and is fairly insensitive to the addition of irrelevant logic. This method
uses BMC to find failures and proves properties by doing a SAT-based approxi-
mate reachability analysis. The results in [1] show that the proof-based method
does better on problems where BDDs are particularly effective. On the other
hand the interpolation method has the advantage on larger problems. That paper
also shows that model checking algorithms based on sequential Automatic Test
Pattern Generation (ATPG) [15,16] are competitive with BDD UMC. These
findings suggest that combining the strengths of these different techniques may
yield more general and robust methods.

This paper explores experimentally the issue of whether abstraction can be
fruitfully combined with SAT-based UMC methods. In particular, we consider
the question of how best to combine abstraction with interpolation-based UMC.
Since the latter is already fairly insensitive to the inclusion of irrelevant logic,
a naive approach to localization abstraction spends more time in the refine-
ment phase than is gained in the UMC phase. We report on two approaches to
solve this problem. The first is to judiciously apply proof-based abstraction with
BDDs only when it is likely to improve performance. The second is to apply a
very coarse but inexpensive refinement method based on ideas from ATPG. The
latter approach avoids the concretization phase that applies BMC to the con-
crete model, and thus results in an order-of-magnitude savings of space, though
the abstractions obtained are far from optimal.

There is a fair amount of related work on integrating BDDs and various
SAT-based techniques. In [12], conflict clauses that were learned from BDDs are
used to improve the performance of SAT BMC. The method proposed in [8] uses
BDDs to compute an over-approximation of the reachable states and applies
these constraints to the SAT BMC problem. The technique described in [3] uses
BDD-based reachability analysis to compute lower bounds on reachable states to
accelerate SAT-based induction. Proof-based and counterexample-based abstrac-
tion methods have been combined in different phases of an iterative abstraction
refinement process in [13]. The hybrid method in [2] use a single abstraction
phase that is intermediate between the proof-based and counterexample-based
abstraction refinement. Abstraction refinement has also been used with BMC
[14] to find failures more effectively. A recent technique [18], that is closest to
our work, combines abstraction refinement and interpolation in a manner which
is similar to using interpolation as the UMC in a proof-based technique. The
differences between this approach and the ones presented in this paper will be
discussed in detail in Section 3.



The paper is organized as follows: Section 2 gives a brief overview of the algo-
rithms, Section 3 describes the two new interpolation-based techniques, Section
4 briefly describes the experimental framework, and discusses the experimental
results and Section 5 summarizes our findings.

2 Overview of the Algorithms

2.1 Preliminaries

A model M = (S,I,T,L) has a set of states S, a set of initial states I C S, a
transition relation T C S x S, and a labeling function L : S — 24 where A is a
set of atomic propositions. For the purposes of this paper, we consider properties
specified in the logic LTL. The construction given in [17] can be used to reduce
model checking of safety properties to checking invariant properties. We use the
liveness to safety construction in [4] for methods, like interpolation based model
checking, which do not support liveness checks. The syntax and semantics of
LTL and other temporal logics is not given here but can be found in [10].

Given a finite state model M and a safety property p, the model checking
algorithm checks that M satisfies p, written M |= p. The forward reachability
algorithm starts at the initial states and computes the image, which is the set of
states reachable in one step. This procedure is continued until either the property
is falsified in some state or no new states are encountered (a fixed point). The
backward reachability algorithm works similarly but starts from the states where
the property is false and computes the preimage, which is the set of states that
can reach the current states in one step. The representation and manipulation
of the sets of states can be done explicitly or with BDDs.

2.2 DPLL-style SAT solvers

The Boolean satisfiability problem (SAT) determines if a given Boolean formula
has a satisfying assignment. This is generally done by converting the formula into
a satisfiability-equivalent formula in Conjunctive Normal Form (CNF), which
can be solved by a SAT solver. A key operation used in SAT solvers is reso-
lution, where two clauses (a V b) and (—a V ¢) can be resolved to give a new
clause (b V ¢). Modern DPLL-style SAT solvers [21, 24, 11] make assignments to
variables, called decisions, and generate an implication graph that records the
decisions and the effects of Boolean constraint propagation. When all the vari-
ables are assigned, the SAT solver terminates with the satisfying assignment.
But if there is a conflict, which is a clause where the negation of every literal
already appears in the implication graph, a conflict clause is generated through
resolution. This conflict clause is added to the formula to avoid making those
assignments again. The SAT solver then backtracks to undo some of the conflict-
ing assignments. The SAT solver terminates with an unsatisfiable answer when it
derives the empty clause, ruling out out all possible assignments. The resolution
steps used in generating the empty clause can now be used to produce a proof
of unsatisfiability.



2.3 SAT-based Bounded Model Checking

Bounded Model Checking (BMC) [5] is a restricted form of model checking,
where one searches for a counterexample (cex) in executions bounded by some
length k. In this approach the model is unfolded & times, conjoined with the nega-
tion of the property, and then encoded as a propositional satisfiability formula.
Given a model M and an invariant property p, the BMC problem is encoded as
follows:

k—1 k
BMC(MJPJ k) = I(SO) A /\ T(Si;S'H-l) A \/ _'p(s’l)
i=0 =0

The formula can be converted into CNF and solved by a SAT solver. If the
formula is satisfiable, then the property is false, and the SAT solver has found
a satisfying assignment that corresponds to a counterexample of length k. In
the unsatisfiable case, there is no counterexample of length k£ and a proof of
unsatisfiability can be obtained from the SAT solver.

2.4 Proof-based Abstraction Refinement

The proof-based abstraction refinement algorithm in [23] iterates through SAT-
based BMC and BDD-based MC. It starts with a short BMC run, and if the
problem is satisfiable, an error has been found. If the problem is unsatisfiable,
the proof of unsatisfiability is used to guide the formation of a new conservative
abstraction on which BDD-based MC is run. In the case that the BDD-based
model checker proves the property then the algorithm terminates; otherwise the
length of the counterexample generated by the model checker is used as the
next BMC length. This procedure, shown in Figure 1, is continued until either a
failure is found in the BMC phase or the property is proved in the BDD-based
MC phase.

procedure PBABDD(M ,p)

1. initialize k

2. while true do

3. if BMc(M,p, k) is SAT then return cex

4. M’ = new abstraction derived from proof
5.  if BbpMc(M', p) holds then return true
6. let k = length of abstract cez

7. end while

end

Fig. 1. Proof-based procedure



2.5 Interpolation-based Model Checking

An interpolant T for an unsatisfiable formula A A B is a formula such that: (1)
A = T (2) TA B is unsatisfiable and (3) Z refers only to the common variables of
A and B. Intuitively, 7 is the set of facts that the SAT solver considers relevant
in proving the unsatisfiability of A A B.

procedure INTERPOLATION(M, p, k)

1. while true do

2. if BMc(M,p, k) is SAT then return cex
3. if ARC(M, p, k) then return true

4. increase k

5. end while

end

Fig. 2. Interpolation procedure

The interpolation-based algorithm [22] uses interpolants to derive an over-
approximation of the reachable states with respect to the property. This is done
as follows (Figures 2 and 3). The BMC problem BMC(M,p,k) is solved for
an initial depth k. If the problem is satisfiable, a counterexample is returned,
and the algorithm terminates. If BMC (M, p, k) is unsatisfiable, the formula rep-
resenting the problem is partitioned into Pref(M,p,k) A Suff (M, p, k), where
Pref(M, p, k) is the conjunction of the initial condition and the first transition,
and Suff (M, p,k) is the conjunction of the rest of the transitions and the final
condition. The interpolant Z of Pref(M,p,k) and Suff (M, p,k) is computed.
Since Pref(M,p,k) = Z, it follows that Z is true in all states reachable from
I(s0) in one step. This means that Z is an over-approximation of the set of states
reachable from I(sg) in one step. Also, since Z A Suff (M, p, k) is unsatisfiable, it
also follows that no state satisfying 7 can reach an error in k — 1 steps. If Z con-
tains no new states, that is, Z = I(sg), then a fixed point of the reachable set of
states has been reached, thus the property holds. If 7 has new states then R' rep-
resents an over-approximation of the states reached so far. The algorithm then
uses R’ to replace the initial set I, and iterates the process of solving the BMC
problem at depth k& and generating the interpolant as the over-approximation
of the set of states reachable in the next step. The property is determined to
be true when the BMC problem with R’ as the initial condition is unsatisfiable,
and its interpolant leads to a fixed point of reachable states. However, if the
BMC problem is satisfiable, the counterexample may be spurious since R’ is an
over-approximation of the reachable set of states. In this case, the value of & is
increased, and the procedure is continued. We use the optimization in [20] that
sets the new value of k£ to be old value of k plus the number of approximate
image steps done in ARC.



procedure ARC(M, p, k)

1. R=1, steps =0

2. while true do

3. M' = (S,R,T,L)

let C = Pref(M',p, k) A Suff (M',p, k)
if C is SAT then return false
compute interpolant Z of C
R =1

if R = R’ then return true
9. R=R VR

10. steps = steps + 1;

11. end while

® N oA

Fig. 3. Approximate Reachable states Computation

3 Combining Interpolation and Abstraction Refinement

3.1 Using Proof-based Abstraction in Interpolation

On certain problems BDDMC can be far more effective than the interpolation-
based algorithm. In particular, on problems where one needs to go deep to find
proofs or failures, BDDMC can be significantly faster. This is the motivation for
using proof-based abstraction (lines 4-5 in Figure 1) in the interpolation method
as shown in Figure 4.

This method works just like the INTERPOLATION procedure if condition is
set to false. However, when condition is true then a proof-based abstraction is
constructed and BDDMC is done on this abstraction. Thus this hybrid technique
makes a choice between two possible UMC methods for proving properties with
the aim of using the more efficient UMC method more often than not. The
key idea being that if the INTERPOLATION procedure was doing poorly, which
typically happens at larger depths, then one would use proof-based abstraction
with BDDMc. However, the inability to predict when BDDs will do poorly could
cause BDDMC to be the bottleneck on problems that can be proved fairly easily
with just interpolation. An optimization that worked well in avoiding wasted
effort was setting an effort limit on the BhpMc phase. We found that setting
the limit based on the effort taken by the ARC procedure in the previous iteration
was adequate. Note that there is no effort limit for the ARC procedure.

Clearly choosing the appropriate condition in Figure 4 is crucial. We use
a simple progress measure for BbDDMcC that is based on the number of image
steps completed divided by the effort needed by the BDDMCc procedure. A sim-
ilar measure can be computed for the ARC procedure that uses the number of
approximate image steps and effort. The INTERPHYBRID algorithm starts with
basic interpolation and the first time that k is greater than some predetermined
limit, a proof-based abstraction is created and BDDMC is run on this abstraction
with an effort limit. At the end of BDDMC step, if we detect that reachability



analysis did not start within the effort limit then BbDDMCc is never used again.
If BbpMCc does reachability, whether it completes or not, the number of image
steps is used to compute the progress measure. If the progress of the ARC pro-
cedure becomes much slower than the progress of previous BhDMC run, then
BpDMC is tried again. Thus the heuristic attempts to use the UMC technique
which is doing better at that point and in the worst case, when the BDDs are
blowing up, we do only one BDDMC run with a low effort bound.

procedure INTERPHYBRID(M, p)

1. initialize &

2. while true do

3. if BMc(M,p, k) is SAT then return cez
4 if condition then

5. derive abstraction M’ from proof
6. if BbpMc(M’,p) then return true
7 k = length of abstract cez

8

else
9. if ARC(M, p, k) then return true
10. increase k
11. endif

12.  update condition
13. end while
end

Fig. 4. Hybrid Interpolation and BDD-based PBA procedure

Combining abstraction refinement with interpolation has been explored in
[18]. This approach is similar to using interpolation instead of BDDMC as the
UMC procedure in the proof-based method. However there are a number of dif-
ferences between this framework [19, 18] and the one in Figure 1. In proof-based
abstraction (Figure 1), a new abstraction is derived from the proof of unsatisfia-
bility in each iteration, while the method in [19] starts with an initial abstraction
and refines this abstraction in each iteration. Another difference is the way the
counterexample is concretized. In proof-based abstraction, BMC at the depth
of the abstract counterexample is done on the concrete model to check if the
counterexample is real. In contrast, the method in [19] takes an incremental ap-
proach that attempts to concretize the counterexample on abstract models and
successively refines the abstraction until either the counterexample is eliminated
or is determined to be real on the concrete model. In [18], they find that combin-
ing abstraction refinement with interpolation results in performance gains over
the basic interpolation method, but they also observe the technique was not an
effective way to improve the performance of interpolation without optimizations,
like refinement prediction and minimization, that are focused on reducing the
size of the abstraction.



3.2 Incremental Interpolation

Unlike BDD-based model checking, the interpolation-based method is fairly ro-
bust with respect to the addition of irrelevant state variables. For this reason, we
can use fairly coarse and inexpensive methods of abstraction refinement. In par-
ticular, if the model is large (with greater that a few thousand state variables) it
may not be practical to concretize abstract counterexamples using a SAT solver
because of the space requirement of the BMC unfolding. Here, we will consider
one method that avoids this concretization step, by borrowing some ideas from
ATPG methods. Sequential ATPG methods search for input sequences to a cir-
cuit that test for the presence of a given fault.

On obtaining an abstract counterexample, we will attempt to produce a
minimal justification of the abstract counterexample by assigning Boolean values
to a subset of the free variables (that is, the primary inputs and the hidden state
variables). A justification is a partial assignment that is sufficient to imply that
the property is false in the abstraction M. The set of hidden state variables
H that are assigned in this justification at any time frame will be called the
justification frontier.

Refinement consists of choosing some subset of the justification frontier and
adding these state variables to the abstraction. Heuristically, these variables
are more likely to be useful in eliminating the abstract counterexample, since
those not occurring in the justification frontier are not relevant to the falsehood
of the property in the cex. There is no guarantee, however, that the set of
variables we choose is sufficient to eliminate the counterexample. Moreover, we
may add many irrelevant variables in this way. We rely on the fact that adding
irrelevant variables does not greatly effect the performance of the interpolation-
based model checking method, so long as there is sufficient space to build the
BMC unfolding.

procedure INTERPINC(M, p, k)

1. choose initial abstraction M

2. while true do

3. if ARC(M,p, k) return true

let C be the abstract cez

let J = JusTIFYCEX(C, M, p, k)
let H = {r | r is hidden in M}
let JE ={r € H | r; € dom(J), for some ¢ € 0..k}
if JF = () then return cex C

. choose a non-empty subset of JF
10. add these variables to M

11. end while

end

©wN oo

Fig. 5. Incremental Interpolation procedure



Thus, the main intent of this approach is to prevent failure due to lack
of space. If, for example, for a model with 100,000 state variables, we select
5000 state variables, out of which only 100 are actually necessary to prove the
property, then we may succeed in preventing memory exhaustion and successfully
prove the property, even though concretization is not feasible in such a large
model.

Moreover, if at some point the justification frontier contains no hidden vari-
ables, then we have obtained a concrete counterexample, since the abstract coun-
terexample fully justifies the falsehood of the property in the concrete model.
This makes it possible to find concrete counterexamples without unfolding the
concrete model, and in fact we will see cases where concrete counterexamples
are obtained, but a BMC unfolding is infeasible due to lack of space.

The overall refinement procedure is outlined in Figure 5. We begin with an
empty abstraction, and check the abstract model. If an abstract counterexample
is obtained, we produce a justification. This is a subset of the assignments in
the abstract counterexample that is sufficient to imply falsehood of the property.
That is, if C is the abstract counterexample, then a justification J C C is an
assignment to the free variables over time, such that

JABMC(M,p,k) = \/ -p(s)
i€0...k

Procedure JUSTIFYCEX computes a justification by a simple greedy approach
that traverses the circuit unfolding depth-first from the property, justifying the
output of each gate by choosing a sufficient subset of its inputs. We first apply all
assignments to the primary inputs, and propagate the implications of these as-
signments in the unfolding. Then we complete the justification by traversing the
unfolding in a depth-first manner from its output (the property node), justifying
the output of each gate by choosing a sufficient subset of its inputs. We have
also modified the SAT solver to terminate with a partial assignment when the
truth of the formula is justified. More sophisticated methods of finding a small
justification are possible [27], though this may or may not provide a performance
benefit.

The procedure then computes the justification frontier, and picks a subset
of the state variables on the frontier to add to the abstraction. We choose a
fixed number N of variables that have the highest aggregate VSIDS score in the
SAT solver [24] for the BMC run that produced the abstract counterexample.
Again, more sophisticated heuristics may be possible here. If the justification
frontier is empty, we have a concrete counterexample, and we terminate. Note
this procedure is terminating, since it adds at least one variable at each iteration.

The INTERPINC procedure can be more expensive than the INTERPOLATION
procedure on the smaller problems hence we chose to be conservative in applying
this method. This can be done within the INTERPOLATION procedure by checking
the size of the unfolding each time k is increased and switching to INTERPINC
only when a predetermined threshold limit is reached. By setting a very large
threshold limit we invoke this procedure only if the size of the model or the value
of k is large.



4 Experimental Analysis

In order to measure the relative performance of the algorithms described in the
previous sections, we used the same BDD-based model checker and SAT solver.
The SAT solver is incremental [28], in the sense that it is possible to add/delete
clauses and restart the solver, while maintaining all previously inferred conflict
clauses that were not derived from deleted clauses.

The benchmark set used has 1205 problems that were derived from 85 hard-
ware designs which ranged in size from a few hundred to more than 100,000
lines of HDL code. Each design in our benchmark set contained from one up to
a few hundred properties to check. The set contained some liveness properties
but about 98% of properties were safety checks. There were 799 passing prop-
erties, 312 failures and 94 problems with unknown results. We partitioned the
problems into three sets (BM1-BM3) based on size and difficulty of the problem.
The set MOUT contains problems from BM1-BM3 where some algorithm ran
out of memory. Table 1 characterizes the types of problems in each set. The
Table shows the number of problems and the time limit used in each set. The
average size of the problems in terms of the number of state variables, combina-
tional variables and inputs is also given. For our experiments we used identical
Redhat Enterprise Linux machines, each with an AMD Opteron CPU at 2GHZ
and 2.6GB of available memory.

Benchmark|# Probs.|Time Limit Avg. Size
(seconds) |State |Comb. |Inputs
BM1 394 100 78 1989 154
BM2 494 1000 307 |2364 |198
BM3 317 3600 2210 |19363 |1067
MOUT 29 10000 19055(151557|8018

Table 1. Characterization of the benchmark sets.

We ran each problem with the specified time limit and measured the number
of problems solved by each method. For all the tables and plots in the sequel, the
time reported for any unresolved problem is the time limit for that problem even
if the method ran out of memory in far less time. The tables present data for the
five algorithms: the original proof-based method with BbpMc (PBABDD), the
proof-based method in Figure 1 with ArRc(M',p, k) instead of BbDMc(M', p)
(PBAINTERP), the interpolation method (INTERPOLATION), the hybrid method
that combines interpolation with BDD-based proof-based abstraction (INTER-
PHYBRID) and the new incremental interpolation method (INTERPINC). Table 2
reports the number of problems resolved (fin) and average time taken per prob-
lem (Av time) for benchmark sets BM1-BM3. For the entire set of problems
(ALL), we also report the geometric mean (Gmean) of the run time. Table 3
presents results for the entire set partitioned into passes and failures. Table 3



report the average terminal BMC depth, and the number of “wins” with respect
to time, where a win is attributed to a particular algorithm if it does better than
all others with respect to runtime. In the case of a tie, which we defined to be
two runs where the difference was less than 5% of the run time, we award a win
for both methods.

Algorithm ALL BM1 BM2 BM3
# fin|Av time|Gmean |# fin|Av time|# fin|Av time|# fin|Av time
PBABDD 1010| 345.2 | 29.2 | 393 | 14.6 | 398 | 220.3 | 219 | 950.6

PBAINTERP 951 | 486.1 40.7 | 360 26.8 389 | 252.2 | 202 | 1421.7
INTERPOLATION| 1032 | 339.5 24.2 | 389 16.3 399 | 227.2 | 244 | 916.2
INTERPHYBRID | 1068 | 272.1 21.4 | 394 14.6 | 411 | 203.9 | 263 | 698.4
INTERPINC 1047 | 324.7 24.6 | 389 17.0 401 | 224.8 | 257 | 863.0

Table 2. Results for benchmark sets (BM1-BM3).

Table 2 shows INTERPOLATION by itself is more robust overall than either
PBABDD or PBAINTERP. The fact that PBAINTERP performs worse than IN-
TERPOLATION can be explained by observing in Table 3 that the terminal BMC
depth for the PBABDD and PBAINTERP methods is on average longer than
INTERPOLATION. This is consistent with the observation in [18] that just re-
placing INTERPOLATION as the UMC in a proof-based abstraction framework
does not necessarily improve the performance of interpolation. The fact that,
within the proof-based abstraction framework, BDDMC is more effective overall
than INTERPOLATION is somewhat surprising since in general INTERPOLATION
dominates BDDMCc[1]. One possible reason is that BDDs do well on most small
models and the abstractions derived in the proof-based method tend to be small.
A second reason, which is the argument made in [23], is that SAT solvers do bet-
ter when the number of relevant variables is small in comparison to the total
number of variables. Since the abstractions are derived from proof generated by
the SAT solver, the number of relevant variables is likely to be higher than usual,
which could cause INTERPOLATION to be less effective.

Algorithm Passes Failures
# fin|# wins|depth|Av. time||# fin|# wins|depth|Av. time
PBABDD 720 | 129 27 213.1 290 | 121 25 236.0

PBAINTERP 671 49 21 386.9 280 70 20 335.6
INTERPOLATION| 735 153 13 211.7 297 14 20 217.9
INTERPHYBRID | 766 | 341 17 132.7 302 85 24 159.7
INTERPINC 746 | 112 13 192.3 301 13 20 210.3

Table 3. Results partitioned into passes and failures.



As we can see in Table 2 the INTERPHYBRID is the most robust method on all
three benchmarks and more so on the larger examples. On the 138 problems that
could not be resolved by the INTERPOLATION method, the INTERPHYBRID pro-
cedure resolved 26% of these problems and the INTERPINC procedure resolved
12% of them. On the 766 problems that were verified by INTERPHYBRID, ap-
proximately 20% were resolved using BDbDMC while the rest were resolved with
ARC procedure. Table 4 presents the same data as Table 3 but partitions the
problems into two sets: one with problems that were resolved by all five methods
(All resolved) and the other with problems that were unresolved by some method
(Some unresolved). As shown in Table 4, the INTERPHYBRID method is faster
than the INTERPOLATION on both sets. It appears that the simple heuristic in
INTERPHYBRID is fairly effective in choosing the appropriate UMC, and we find
that the overhead of using BhpDMCc is minimal. This leads us to conclude that
since BDDMCcC works better as the UMC for PBa, it is better to add PBABDD
to INTERPOLATION rather than use INTERPOLATION within the proof-based ab-
straction refinement method.

Algorithm All Resolved Some Unresolved

# fin|# wins|depth|Av. time||# fin|# wins|depth|Av. time
PBABDD 887 | 138 14 28.5 123 61 96 266.8
PBAINTERP 887 57 14 52.5 64 6 56 386.8

INTERPOLATION|| 887 | 132 8 27.5 145 35 47 236.6
INTERPHYBRID || 887 | 376 8 21.3 181 60 95 218.4
INTERPINC 887 87 8 28.7 160 38 75 352.9

Table 4. Summary table for resolved problems.

The INTERPINC procedure has the same performance on BM1 and BM2 but
is slightly more robust on the harder problems in BM3. The incremental inter-
polation method, however, was intended to be efficient with respect to space.
Therefore we consider the results for the 29 problems where some algorithm ran
out of memory in Table 5. The Table presents the number of problems that
passed, failed, exceeded the time limit (TO), ran out of memory (MO), the aver-
age time and the number of state variables in the last abstraction (Abs. size). We
increased the time limit for these problems to 10000 seconds to gauge whether
the incremental algorithm could solve additional problems with more time. The
data indicates that the incremental interpolation approach is very effective in
resolving these problems. The average memory usage of the INTERPINC proce-
dure on these problems is 623 Megabytes which indicates that the method is
highly efficient with respect to memory usage. Table 5 shows that although the
INTERPINC method yields larger abstractions, it is still more efficient in terms
of performance than PBAINTERP. This demonstrates that a very coarse but fast
abstraction refinement heuristic can be effective with interpolation. Qur ATPG-



style heuristic gives a small overall improvement in robustness of interpolation
with a large improvement in space.

Algorithm # Pass|# Fail|TO|MO|Avg. Time|Abs. size
PBABDD 0 0 5 (24| 10000.0 38
PBAINTERP 0 0 11| 18 | 10000.0 70
INTERPOLATION 1 1 13| 14 9349.4 -
INTERPHYBRID 1 2 5 |21 9013.1 -
INTERPINC 8 6 13| 2 6527.0 999

Table 5. Results for the 29 Memory Intensive Examples (MOUT).

Figures 6 and 7 contain scatter plots of runtime in seconds. We see in Figure
6 that INTERPOLATION and its two variants, INTERPHYBRID and INTERPINC,
are highly correlated but both variants have an advantage on problems that are
hard for INTERPOLATION to solve. Figure 7 is interesting since it shows that, but
for a few cases, PBAINTERP does far worse than INTERPOLATION. The right plot
in 7) shows the run time of PBAINTERP versus a parallel run of INTERPOLATION
and PBA (i.e. the best result of both methods). We see that PBAINTERP is slower
in general but does resolve some problems that the parallel runs could not.
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Fig. 6. Plot of time in seconds. Left: X-axis is Interpolation and Y-axis is InterpHybrid.
Right: X-axis is Interpolation and Y-axis is InterpInc.

5 Conclusions

This paper focused on combining abstraction refinement with interpolation-
based UMC, with the goal of making this method more general and robust.
First, we added a proof-based abstraction step to interpolation in order to use
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Fig. 7. Plot of time in seconds. Left: X-axis is Interpolation and Y-axis is Pbalnterp.
Right: X-axis is InterpHybrid and Y-axis is a parallel run of Interpolation and Proof-
based abstraction.

BDDs when they prove to be effective. This method was found to be very efficient
on the problems in our benchmark set. Next, we describe a new incremental in-
terpolation method that is designed to be memory efficient. This technique uses
ATPG style justification in the concretization step which is generally the bottle-
neck with respect to space. A conservative application of this method was very
effective on memory intensive problems and competitive with the interpolation
method in general. Our findings can be summarized as follows.

1.

2.

The basic interpolation method is more robust overall than proof-based ab-
straction, with either interpolation or BDDs as the UMC.

Simple proof-based abstraction is not an effective way to improve the per-
formance of interpolation as observed in [18]. We found that the terminal
BMC depth for PBAINTERP is on average longer than interpolation which
in part explains the performance differences.

Since the data shows that BDDMC is more effective as the UMC in PBA,
one can conclude that adding PBABDD to the interpolation method is better
than using interpolation as the UMC in PBA.

A very coarse but fast abstraction refinement heuristic can be effective with
interpolation. Our ATPG-style heuristic gives a small overall improvement
in robustness of interpolation with a large improvement in space.
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