
Abstract Counterexamples for Non-disjunctive
Abstractions

K. L. McMillan1 and L. D. Zuck2?

1 Cadence Research Labs
2 University of Illinois at Chicago

Abstract. Counterexample-guided abstraction refinement (CEGAR) is
an important method for tuning abstractions to properties to be verified.
The method is commonly used, for example in selecting predicates for
predicate abstraction. To date, however, it has been applied primarily to
powerset abstractions, which allow one to speak of an abstract transition
system and abstract states. Here, we describe a general framework for
CEGAR in non-disjunctive abstractions by introducing a generalized no-
tion of abstract counterexample, and methods for computing such coun-
terexamples. We apply this framework to Indexed Predicate Abstraction
(IPA), a promising technique for synthesizing quantified inductive in-
variants of infinite-state systems. In principle, it can be applied to other
non-disjunctive abstractions occurring in program analysis.

1 Introduction

Effective application of abstract interpretation depends on choosing the right ab-
stract domain. This domain must be rich enough to contain an inductive invari-
ant that proves a given property, but not so rich as to make analysis intractable.
One very fruitful approach to choosing abstractions has been abstraction refine-
ment. That is, when our abstract domain fails to prove a given property, we
analyze this failure, producing a refined abstract domain that rules out some
class of failures. This process repeats until either the property is proved, or anal-
ysis reveals that the property is false, or computational resources are exhausted.
A particularly successful form of abstraction refinement is counterexample-guided
abstraction refinement, or CEGAR [10, 2]. In this approach, when the abstract
domain fails to prove the property, we produce an abstract counterexample. This
is a sequence of abstract states in which every transition is allowed by the ab-
stract transformer, and the property is violated. An abstract state is, in effect, an
atom of the abstract lattice. We refine the abstract domain so as to rule out the
abstract counterexample. Abstract counterexamples both focus and simplify the
refinement process, since they allow us to consider a limited class of behaviors.

? This material was based on work supported by the National Science Foundation,
while Lenore Zuck was working at the Foundation. Any opinion, finding, and con-
clusions or recommendations expressed in this article are those of the author and do
not necessarily reflect the views of the National Science Foundation.

CEGAR has been applied effectively to a variety of domains, including local-
ization abstractions [10] and predicate abstraction [18]. Its use is limited, how-
ever, by the fact that it applies only to abstract domains that are disjunctive
(i.e., closed under union). It is this condition that allows us to construct abstract
counterexamples. For example, CEGAR cannot be applied directly to indexed
predicate abstraction [11] (IPA) because this abstraction is not disjunctive.

In this work, we generalize the notion of abstract counterexample to a con-
struct we call a minimal sufficient explanation (MSE). An MSE is a sequence
of elements of the abstract domain that may not be atoms. In the case of an
abstract lattice that is atomistic and disjunctive, however, it reduces to the
standard notion of abstract counterexample. An MSE may be used to focus ab-
straction refinement in much the same way as an abstract counterexample, for
example, using the interpolation approach [7]. Our primary motivation in this
work is to be able to effectively refine indexed predicate abstractions, and we
will use this method as an example application.

Related work Existing work on refinement of non-disjunctive abstractions is
not based on abstract counterexamples. Typically, the weakest liberal precondi-
tion operator is iterated. This allows us to find the first point in the abstract fixed
point series in which lost information resulted in inclusion of a bad concrete state
(one reaching a state violating the property). The abstraction is refined at this
point. For example, Gulavani and Rajamani do this by eliminating widenings at
specific points in the fixed point series [6].

In the terminology of this paper, the sequence of (negations of) the weakest
preconditions of the property is a sufficient explanation for the failure to prove
the property. However, it is not minimal with respect to the given abstract
domain, nor is it generally even expressible in that domain. Using a minimal
sufficient explanation allows us to focus on a restricted set of concrete behav-
iors. In this way, we hope to gain both efficiency and better focus on relevant
refinements, as in CEGAR. Moreover, this avoids having to deal with the series
of weakest preconditions, which may have deeply nested quantifiers in the case
of programs with input or non-deterministic choice.

Since one of the goals of this work is to produce quantified inductive in-
variants, we mention some other work in this area. Lahiri presents a collection
of heuristics based on the weakest precondition operator for guessing indexed
predicates [11], but leaves open the question of how to apply CEGAR. Hen-
zinger, et al., use interpolants for predicate refinement [7], but without index
variables. The method of invisible invariants [16] can effectively synthesize quan-
tified invariants, but only for families of finite-state systems. IPA can also handle
infinite-state systems.

Outline The paper is organized as follows. Section 2 introduces the notion
of MSE, or generalized abstract counterexample. Section 3 then reviews the
method of indexed predicate abstraction, and shows how to compute MSE’s for
this application. In section 4, we show how indexed predicates can be derived

2

from interpolants, and how, in principle, MSE’s can be used to drive this process
in a CEGAR loop.

2 Generalized abstract counterexamples

In this section, we generalize the concept of abstract counterexample. The idea is
to view an abstract counterexample not as a run of an abstract transition system,
but rather as a minimal sufficient explanation of the failure of the abstraction
to prove a given property. We will see that in the case of powerset abstractions,
these two notions coincide.

Abstract interpretation First we review some concepts from abstract inter-
pretation [3]. Consider a concrete transition system with set of states S, initial
states I ⊆ S, and transition relation T ⊆ S×S. We can define a concrete trans-
former τ(s) = I ∪T (s), where T (s) is the image of s with respect to T . The least
fixed point of τ is the set of concrete reachable states of the system.

An abstraction of the system is defined by an abstract lattice L and a mono-
tone concretization function γ : L → S. The abstract lattice is ordered by v,
with least upper bound operator t and greatest lower bound operator u, usu-
ally referred to as “join” and “meet” respectively. If we think of L as a logical
language, then γ defines the semantics of the language, with γ(p) giving the
extension of predicate p ∈ L.

We will assume that L is finite and intersection-closed, that is, for any p, q ∈
L, there exists r ∈ L such that γ(r) = γ(p) ∩ γ(q). In this case, γ is the upper
adjoint of a Galois connection, whose lower adjoint is:

α(s) = u{p | s ⊆ γ(p)}

The abstraction function α gives the best abstract approximation of a set of
states s, which can be thought of as the conjunction of all the predicates in L
that are valid over s.

This in turn gives us a best abstract transformer, τ] = α ◦ τ ◦ γ. For any
predicate p ∈ L, this function yields the best abstract approximation of the set
of successors of states in p. The fixed points of τ] are all the inductive invariants
in L, and the least fixed-point is the strongest of these. Thus, to prove that
a given set F ⊆ S is unreachable, we compute the least fixed point of τ], as
the stable limit of the series (τ])i(⊥). Then, if lfp(τ]) u α(F) = ⊥ we say the
abstraction proves F unreachable. On the other hand, if (τ])i(⊥) u α(F) 6= ⊥
for any i > 0, then the abstraction fails to prove unreachability of F .

Explanation of failures What then would constitute a minimal sufficient
explanation for such a failure? Consider first the case of a single transition. Given
two predicates p, q ∈ L, we will say that p is a minimal sufficient precondition
(MSP) of q when τ](p) w q and there is no ṗ < p such that τ](ṗ) w q. That is,
p is a minimal element of the abstract lattice sufficient to guarantee at least q

3

at the next time. Put another way, p is an explanation of why the abstraction
produced q at the next time.

Now we extend this notion to a reachability computation. We will say that
a sequence x0, . . . xk ∈ L∗ is a minimal sufficient explanation (MSE) for failure
to prove unreachability of F , when it is pointwise minimal such that:

– x0 = ⊥ and
– for all 0 ≤ i < k, τ](xi) w xi+1, and
– xk u α(F) 6= ⊥

That is, each element of the sequence is a MSP of its successor, and the last
element fails to rule out F .

The notion of MSE corresponds precisely to the notion of “abstract coun-
terexample” in the traditional CEGAR framework. This framework applies only
to powerset abstractions. This means that γ is disjunctive (join-preserving) in
the sense that γ(ptq) = γ(p)∪γ(q). Moreover, it requires that L be atomistic, in
that every element is the join of some set of atoms (elements that cover ⊥). For
example, in predicate abstraction, the join operation is logical disjunction (i.e.,
union over sets of states) and the atoms are the minterms over the abstraction
predicates P (a minterm over P is a conjunction of literals over P in which each
predicate in P occurs once).

In this case, we can think of the atoms of L as “states” of an abstract tran-
sition system. That is, because of the disjunctive join and atomicity, τ] is point-
wise over atoms:

τ](p) = t{τ](a) | a ∈ atoms(p)} t τ](⊥)

It follows that an MSP of any atom is an atom or ⊥. That is, if τ](p) w q and
p 6= ⊥, then p contains some atom a such that τ](a) w q. Thus, in a disjunctive,
atomistic abstraction such as predicate abstraction, MSE’s contain only atoms,
and we can think of them as sequences of abstract “states”.

This is not true in the general case, however. For example, indexed predicate
abstraction is atomistic but not disjunctive. As a result, an MSE is a sequence
of sets of atoms. One way to view the occurrence of multiple atoms at some
point in the MSE is that the abstract interpretation has lost information in
merging multiple execution paths. Thus, no one path is sufficient to “explain”
the successor state.

Computing generalized counterexamples Now we consider the problem of
computing an MSE for failure to prove unreachability of F . Suppose that we have
computed a sequence of fixed point approximations xi = (τ])i(⊥) for i = 0 . . . k
such that xk u α(F) 6= ⊥. There is a simple but inefficient backward approach
to computing an MSE. We start by setting xk to any atom in xk u α(F). Then
for i = k − 1 down to 1, we greedily reduce xi in the lattice order so long as
τ](xi) w xi+1. If L is atomistic, this means greedily removing atoms from xi.
When xi cannot be further reduced, it is an MSP for xi+1, and we move on to
xi−1. At the end of this process, we have an MSE for the failure.

4

This simple approach could be computationally costly, because the height of
the abstract lattice is typically exponential in some parameter of the abstraction
(for example, in predicate abstraction it is exponential in the number of abstrac-
tion predicates). Thus, the number of reduction steps can also be exponential.
To avoid this, we need some way of putting an upper on the MSP so that the
number of reduction steps necessary to reach the MSP is also bounded. We will
show how to do this in some special cases of practical interest.

Our basic problem is to compute a MSP for predicate q that is dominated
by some predicate p. For any monotone transformer τ , we will write the set of
sufficient preconditions of q dominated by p as:

SP(p, τ, q) = {p̂ | p̂ v p and τ(p̂) w q}

The set of minima of this set will be denoted MSP(p, τ, q). Our general approach
will be to compute a SP, then iteratively remove atoms until it becomes a MSP.

To do this, we can rely on several useful properties of SP. First, SP is join-
preserving, that is, if p̂i ∈ SP(p, τ, qi) then tip̂i ∈ SP (p, τ,tiqi). This is due
simply to monotonicity of τ . It means that to compute a SP for q, we can simply
take the join of SP’s for the individual atoms of q. As we observed above, when
τ is join-preserving, we need only consider SP’s for atoms that are atoms. In
addition, we can make use of the following results:

Theorem 1. If τ is meet-preserving, then SP(p, τ, q) is closed under meets.
Moreover, if SP(p, τ, q) is non-empty, the unique element of MSP(p, τ, q) is
uSP(p, τ, q).

Theorem 2 (Meet rule). Let τ(s) = uiτi(s), for τi meet-preserving, and sup-
pose p̂i ∈ MSP(p, τi, q). Then tp̂i ∈ MSP(p, τ, q).

Theorem 3 (Chain rule). If τ = τ2◦τ1 and p̂ ∈ MSP(p, τ, r), then there exists
q̂ such that p̂ ∈ MSP(p, τ1, q̂) and q̂ ∈ MSP(τ1(p), τ2, r).

The chain rule allows us to compute MSP’s for a composition of transformers
by working backward. We can think of the MSE computation as being one long
application of this rule.

3 Indexed predicate abstraction

We now apply the notion of MSE to the problem of abstraction refinement for
indexed predicate abstraction. We will apply IPA to transition systems repre-
sented symbolically using first-order logic. We break the abstract transformer
for IPA into a composition of a join-preserving and a meet-preserving trans-
former. Then we use the chain rule and the meet rule to compute MSP’s. By
this means, we use a number of decision procedure calls which is quadratic in
the final number of atoms in the MSE.

5

Symbolic transition systems Let Σ be a first-order signature consisting of
individual variables and uninterpreted n-ary functional and propositional con-
stants. A state formula is a first-order formula over Σ, (which may include
various interpreted symbols, such as = and +). We can think of a state formula
φ as representing a set of states, namely, the set of first-order models of φ. We
will express the proposition that an interpretation σ over Σ models φ by φ[σ],
or σ |= φ. If s is a set of interpretations, we will write s |= φ to mean that every
element of s models φ.

We also assume a first-order signature Σ′, disjoint from Σ, and containing
for every symbol v ∈ Σ, a unique symbol v′ of the same type. For any formula
or term φ over Σ, we write φ′ for the result of replacing every occurrence of a
symbol v in φ with v′. Similarly, for any interpretation σ over Σ, we will denote
by σ′ the interpretation over Σ′ such that σ′v′ = σv. A transition formula is a
first-order formula over Σ∪Σ′. We think of a transition formula T as representing
a set of state pairs, namely the set of pairs (σ1, σ2), such that σ1 ∪σ′

2 models T .
We will express the proposition that σ1 ∪ σ′

2 models T by T [σ1, σ2].
A symbolic transition system is a pair (I, T), where I is a state formula and

T is a transition formula. We interpret this as a transition system whose initial
states are represented by I and whose transition relation is represented by T .

Indexed predicate abstraction Indexed predicate abstraction [11] is simi-
lar to predicate abstraction, except that the predicates contain free variables
that are implicitly universally quantified. We start with a distinguished set
J = {i, j, k, . . .} of individual variables called the index variables, not occur-
ring in I or T , and a finite set P of atomic formulas (possibly containing index
variables). Our abstract lattice is the lattice LP of Boolean combinations over P .
In this lattice, the atoms are the minterms over P , which we can think of as either
truth assignments to P , or conjunctions of literals over P . To avoid confusion
between an atom of the abstract lattice and an atomic predicate, from here on
we will refer to the lattice atoms as minterms.

Each element in LP is a set of minterms. The lattice order v is set inclusion,
and the meet and join are intersection and union, respectively. Alternately, we
can think of meet and join as propositional conjunction and disjunction, and the
lattice order as propositional implication (i.e., where the propositions in P are
uninterpreted). The concretization function is defined by:

γ(p) = {σ | σ |= ∀J. p}

That is, p represents the set of concrete states that model p for all valuations
of the index variables. Because universal quantification distributes over conjunc-
tion, γ is meet-preserving. Thus the corresponding abstraction function is, by
definition:

α(s) = u{p | s |= ∀J. p}
which is equivalent to:

α(s) = {m ∈ minterms(P) | σ |= ∃J. m for some σ ∈ s}

6

This identity allows us to write the best abstract transformer as

τ](p) = {m ∈ minterms(P) | σ |= (∃J. m) for some σ ∈ τ(γ(p))}
= {m ∈ minterms(P) | (∀J. p) ∧ T ∧m′ is sat.} t α(I)

That is, computing τ](p) amounts to deciding 2|P | satisfiability problems in
first-order logic, one for each minterm over P . However, since first-order logic is
undecidable, we make a further over-approximation by heuristically choosing a
finite set of instantiations for the quantifiers.3

A substitution ρ for a set W of individual variables is a function that maps
each variable in W to a first-order term. We will write ρ(φ) for the application
of substitution ρ to formula φ (i.e., the simultaneous replacement of each occur-
rence of variable w ∈ W by ρ(w)). Given a set of substitutions I, we write I(φ)
to denote

∧
{ρ(φ) | ρ ∈ I}. Note that if I is a set of substitutions for J , then

∀J : φ implies I(φ).
Now we choose a finite set of substitutions I for the index variables and a

suitable instantiation Ṫ of transition formula T . We might use, for example, the
quantifier instantiation heuristics used in provers such as Simplify [5] for this
purpose. The problem of instantiation is inherent in IPA, and not specifically
related to abstraction refinement. The incompleteness of instantiation heuristics
results in over-approximation. We can express the over-approximation of the
best transformer as:

τ̇](p) = {m ∈ minterms(P) | I(p) ∧ Ṫ ∧m′ is sat.} t α(I)

After instantiation, the satisfiability problems are quantifier-free, which means
we can use an appropriate decision procedure, or reduce the problem to Boolean
satisfiability. In [11], ALL-SAT methods are used to efficiently compute all the
satisfying minterms. Even with these methods, τ̇] may still be costly to compute
in practice, so a weaker approximation may be called for.

Abstract counterexamples for IPA Notice that indexed predicate abstrac-
tion is not disjunctive. This is because universal quantification does not dis-
tribute over disjunction. In general, if p and q are two predicates in the abstract
lattice, the concretization of their disjunction ∀J.(p ∨ q) is not equivalent to
the disjunction of their concretizations (∀J. p) ∨ (∀J. q). As an example of this,
suppose that a system chooses arbitrarily two process indices x and y, and tran-
sitions to a particular control state s when process x is in state p, but process y is
not in state p. If we start from the minterm p(i)∧¬s, then clearly we cannot tran-
sition to state s, since this represents ∀i : p(i)∧¬s, states in which all processes
are in state p. Similarly, if we start from the minterm ¬p(i)∧¬s, we also cannot
transition to s. However, if we start from disjunction (p(i) ∧ ¬s) ∨ (¬p(i) ∧ ¬s),

3 We could, of course, restrict ourselves to a decidable fragment, such as Presburger
arithmetic, but this would not allow us to model, for example, parametrized proto-
cols, or programs with unbounded arrays.

7

then we can transition to s. The abstract transformer is not point-wise over
minterms, in the sense that a pair of minterms can have a successor that neither
individual minterm has. For this reason, IPA does not yield abstract counterex-
amples.

However, we can compute MSE’s and use these as an aid in refining the
abstraction. We first observe that the computation of τ̇](p) can be broken into a
sequence of two transformers: the instantiation of the index variables, followed
by a forward image operation. The first transformer is function η : LP → LṖ ,
where Ṗ = {ρ(φ) | φ ∈ P, ρ ∈ I}, such that η(p) = I(p).

As an example, suppose that J = {i}, P = {s, p(i)} and I = {ρ1, ρ2},
where ρ1(i) = x and ρ2(i) = y. Then Ṗ = {s, p(x), p(y)}, and η(p(i) ∧ ¬s) =
p(x) ∧ p(y) ∧ ¬s.

The second transformer is function δ : LṖ → LP that computes the predicate
image with respect to Ṫ . That is, let

δ(p) = {q ∈ minterms(P) | p ∧ Ṫ ∧ q′ is sat.}

This gives us τ̇](p) = δ(η(p))tα(I). We show how to compute MSP’s for δ and
η, then combine these steps using the chain rule to compute MSP’s for τ̇].

Since δ is pointwise, the MSP’s for a minterm q with respect to δ are also
minterms. We can write the set of MSP’s of minterm q as:

MSP(p, δ, q) = {m ∈ minterms(Ṗ) | m v p and δ(m) w q}
= {m ∈ minterms(Ṗ) | m ∧ p ∧ Ṫ ∧ q′ is sat.}

Thus, finding one MSP for a minterm is a satisfiability problem. Because SP is
join-preserving, we can compute a SP for any predicate q as the join of MSP’s
for the minterms of q. This SP can then be reduced to a MSP. Testing whether
one minterm can be removed from the SP requires |q| satisfiability tests (the
number of minterms in q). Thus, in the worst case, the number of tests needed
to compute an MSP is quadratic in |q|.

The transformer η is a meet over a finite set of transformers, that is, the
individual substitutions:

η(p) = u{ρ(p) | ρ ∈ I}

Thus, we can apply the meet rule, computing a MSP of η as a join over MPS’s of
the individual substitutions. Moreover, since substitutions are meet preserving,
their MSP’s are unique. Given a substitution ρ and a minterm m ∈ LṖ , there
is a unique minterm n ∈ LP such that ρ(n) w m. This is the one minterm such
that for every literal l occurring in n, ρ(l) occurs in m. Put another way, if we
think of a minterm over P as a truth assignment to the predicates in P , then
for all predicates φ ∈ P , n(φ) = m(ρ(φ)).

Continuing the previous example, suppose that m is the minterm s ∧ p(x) ∧
¬p(y). Then the unique MSP of m with respect to ρ1 is the minterm s ∧ p(i).
This is because m contains ρ1(s) = s and ρ1(p(i)) = p(x). In general, if m is a
minterm in LṖ , we have:

MSP(p, η,m) = {λφ. m(ρ(φ))}

8

Algorithm 1
Input: A pair p, q ∈ LP

Output: An MSP p̂ of q, such that p̂ v p
1) Let M = ∅
2) For each minterm m in q \ α(I):

3) let m̂ be a minterm over Ṗ s.t. I(p) ∧ m̂ ∧ Ṫ ∧m′ is sat.
4) add m̂ to M
5) Greedily remove minterms from M , while δ(M) w q
6) For each minterm mi ∈ M :
7) let ni = t{{λφ. mi(ρ(φ)} | ρ ∈ I}
8) Return tini

Fig. 1. MSP computation for IPA

By the meet rule and the join-preserving property, the unique MSP for a predi-
cate q with respect to η is:

MSP(p, η, q) = {t ∪ {MSP(p, ρ,m) | ρ ∈ I, m ∈ minterms(q)}}

Continuing our previous example, if m = s ∧ p(x) ∧ ¬p(y) and p = >, then
MSP(p, η,m) = (s∧p(i))∨(s∧¬p(i)) = s. The first disjunct derives from ρ1 and
the second from ρ2. This is a case where no single minterm serves as an MSP
for a minterm.

With this result, we can now compute an MSP for the composition δ ◦ η
using the chain rule. To find an element of MSP(p, δ ◦ η, r), we first compute
q = η(p). Then let q̂ be an element of MSP(q, δ, r), and finally find an element of
MSP(p, η, q̂). The resulting algorithm for computing a MSP in indexed predicate
abstraction is shown in Figure 1.

In lines 1–4, we compute a SP of q with respect to δ, restricted to η(p). At
line 5, this is reduced to an MSP. In lines 6–8, we then compute the unique MSP
with respect to η.

Notice that the number of satisfiability tests at line 3 is just |q|, the number
of minterms in q. Each test of δ(M) w q at line 5 could cost |q| satisfiability
tests, making the total number of tests quadratic in |q|. Alternatively, the test of
δ(M) w q might be done with a BDD image computation. The total number of
decision problems we encounter is quadratic in the largest element of the MSE
and linear in its length. Of course, this does not mean the number of minterms
in the MSE cannot be exponential in |P |. For example, the number of minterms
might double at each backward step.

4 Indexed predicates from interpolants

Interpolation has been used to derive relevant predicates for ordinary predicate
abstraction from the refutation of counterexamples [7, 8]. This is one possible
approach to counterexample-guided abstraction refinement. In this section, we

9

extend this CEGAR technique to indexed predicate abstraction, using the notion
of MSE introduced above. In effect, we make use of MSE’s as constraints to
simplify and focus the interpolant computation process.

Bounded model checking For any symbol s, and natural number i, we will
use the notation s〈i〉 to represent the symbol s with i primes added. Thus, s〈3〉

is s′′′. A symbol with i primes will be used to represent the value of that symbol
at time i. We also extend this notation to formulas. Thus, the formula φ〈i〉 is
the result of adding i primes to every uninterpreted symbol in φ.

Now, given a system (I, T), we define a symbolic transformer formula T =
T ∨ I ′. This is defined so that the image of a set of states s with respect to T
is exactly τ(s). The following formula is satisfiable exactly when τk(⊥)∩F 6= ∅,
that is, when a state in F is reachable in k − 1 steps or fewer from a state in I:

I〈1〉 ∧ T 〈1〉 ∧ · · · T 〈k−1〉 ∧ F 〈k〉

We will refer to this as a bounded model checking formula [1], since by test-
ing satisfiability of such formulas, we can determine the reachability of a given
condition within a bounded number of steps.

Interpolants from proofs Given a pair of formulas (A,B), such that A ∧
B is inconsistent, an interpolant for (A,B) is a formula Â with the following
properties:

– A implies Â,
– Â ∧B is unsatisfiable, and
– Â refers only to the common symbols of A and B.

Here, “symbols” excludes symbols such as ∧ and = that are part of the logic
itself. Craig showed that for first-order formulas, an interpolant always exists
for inconsistent formulas [4]. Of more practical interest is that, for certain proof
systems, an interpolant can be derived from a refutation of A∧B in linear time.
For example, a purely propositional refutation of A∧B using the resolution rule
can be translated to an interpolant in the form of a Boolean circuit having the
same structure as the proof [9, 17].

In [13] it is shown that linear-size interpolants can be derived from refutations
in a first-order theory with uninterpreted function symbols and linear arithmetic.
This translation has the property that whenever A and B are quantifier-free, the
derived interpolant Â is also quantifier-free. In [14], a method is described for
computing universally quantified interpolants in first-order logic with equality,
when such interpolants exist. In the sequel, we will assume that interpolants
are universally quantified, and that the quantified variables are always drawn
from J , the index set.

Heuristically, the chief advantage of interpolants derived from refutations is
that they capture the facts that the prover derived about A in showing that A is
inconsistent with B. Thus, if the prover tends to ignore irrelevant facts and focus

10

on relevant ones, we can think of interpolation as a way of filtering out irrelevant
information from A. Thus, atomic predicates occurring in the interpolant may
be considered “relevant” to the refutation.

We can generalize the notion of interpolant to sequences of formulas. That
is, given a sequence of formulas Γ = Γ1, . . . , Γn, we say that A0, . . . An is an
interpolant for Γ when

– A0 = True and An = False and,
– for all 1 ≤ i ≤ n, Ai−1 ∧ Γi implies Ai and
– for all 1 ≤ i < n, Ai refers only to common symbols between the prefix

Γ1 . . . Γi and the suffix Γi+1 . . . Γn.

An interpolant for a sequence can also be derived from a refutation of its con-
stituent formulas.

We can use this concept to derive new indexed predicates sufficient to rule
out a given abstract counterexample. In what follows, we will use a subscript
to indicate the predicate set used to obtain a given quantity. Thus τ]

P is the
abstract transformer obtained with predicate set P and so on. Now, suppose
that using indexed predicate abstraction with predicates P , we obtain an MSE
XP = x0, . . . , xn. The concretizations of XP are all the sequences of concrete
states s1, . . . , sn such that each si models γ(xi). If any such concretization is
actually a failing run of (I, T), then the property is false. Otherwise, we would
like to refine P by adding a set of predicates β sufficient to rule out XP .

To this end, let Γ , the concretization sequence, be the following sequence of
formulas:

I<1>, (T ∧ γ(x1))<1>, (T ∧ γ(x2))<2>, . . . , (T ∧ γ(xn−1))<n−1>, (F ∧ xn)<n>

The conjunction of these formulas, ∧Γ is just a bounded model checking formula
for (I, T) with the added constraint γ(xi) at each time i. The models of this
conjunction are precisely the concretizations of XP that are failing runs of (I, T).
If we can prove ∧Γ unsatisfiable, then XP is a false counterexample. We can then
extract from the proof an interpolant as a sequence of quantified formulas for the
form True, A<1>

1 , . . . , A<n>
n ,False. We assume these are universal formulas,

such that each Ai = ∀J.φAi . We now let β be the set of atomic predicates
occurring in φAi for any i. These are the predicates we will add to P in the next
iteration of the refinement loop.

We can show that these predicates rule out future abstract counterexamples
consistent with XP . This is because the interpolant properties guarantee that
τ]
β(Ai ∧ xi) ⇒ Ai+1. Thus, if XP were a sufficient explanation for τ]

β , then by
induction we could show xi ⇒ Ai, which implies that the interpolant sequence
cannot end in False. This also implies that we cannot have β ⊆ P , since in this
case Xp must also be a sufficient explanation for τ]

β . Thus, the refinement step
is guaranteed to add at least one new predicate. The practical function of the
abstract counterexample is to act as a constraint on the bounded model checking
problem, thus helping to make the refutation tractable.

11

We should note that using the method of [14] to generate interpolants has
some limitations. The logic supported in that work is first order logic with equal-
ity. If other theories are needed, such as the theory of arrays or arithmetic, these
must be axiomatized. This is necessarily incomplete for theories that have no
finite axiomatization and can also be inefficient. In [14], however, it is shown that
interpolation can successfully find invariants for simple heap manipulating pro-
grams, using simple arithmetic and an array theory with reachability predicates.
Thus, there is some reason to think it may be effective for the more restricted
task of abstraction refinement. The method described here can benefit from any
future advances in interpolation methods. Moreover, the use of MSE’s in ab-
straction refinement is not limited to interpolation methods, or for that matter
to IPA. It might be applied to a variety of program analyses with non-disjunctive
joins.

5 Conclusion

We have defined a notion of abstract counterexample for non-disjunctive abstract
domains, called a minimal sufficient explanation. The notion of MSE reduces to
the traditional notion of abstract counterexample for powerset abstractions. We
showed how to compute MSE’s for a particular example of a non-disjunctive
abstraction, indexed predicate abstraction. The purpose of an abstract coun-
terexample in the CEGAR framework is to simplify and focus the abstraction
refinement process. We showed how this could be done with MSE’s, using an
interpolant-based refinement approach. In particular, we saw that universally
quantified interpolants can provide the indexed predicates needed to rule out a
given MSE, thus guaranteeing refinement progress.

The hope is that, by restricting the analysis to a smaller set of concrete
behaviors, the MSE approach may significantly lessen the burden on the first-
order prover used for interpolant generation. Of course, it remains to be seen
whether in practice the use of abstract counterexamples in IPA is more efficient
than the alternatives, such as proof-based abstraction [15] or similar approaches
based on weakest preconditions [6].

We also think it is possible that MSE’s can be applied to refinement of other
non-disjunctive abstractions, such as the partially-disjunctive shape abstractions
of [12].

References

1. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In TACAS, pages 193–207, 1999.

2. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, pages 154–169, 2000.

3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In POPL,
pages 238–252, 1977.

12

4. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic, 22(3):269–285, 1957.

5. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, 2003.

6. B. S. Gulavani and S. K. Rajamani. Counterexample driven refinement for abstract
interpretation. In TACAS, pages 474–488, 2006.

7. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, pages 232–244, 2004.

8. R. Jhala and K. L. McMillan. A practical and complete approach to predicate
refinement. In H. Hermanns and J. Palsberg, editors, TACAS, volume 3920 of
LNCS, pages 459–473. Springer, 2006.

9. J. Kraj́ıc̆ek. Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic. J. Symbolic Logic, 62(2):457–486, June
1997.

10. R. P. Kurshan. Computer-Aided-Verification of Coordinating Processes. Princeton
University Press, 1994.

11. S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predicates.
ACM Trans. Comput. Log., 9(1), 2007.

12. R. Manevich, S. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap
abstraction. In SAS, pages 265–279, 2004.

13. K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
345(1):101–121, 2005.

14. K. L. McMillan. Quantified invariant generation using an interpolating saturation
prover. In TACAS, pages 413–427, 2008.

15. K. L. McMillan and N. Amla. Automatic abstraction without counterexamples.
In TACAS, pages 2–17, 2003.

16. A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive verification with invisible
invariants. In TACAS, pages 82–97, 2001.

17. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic, 62(2):981–998, June 1997.

18. H. Säıdi and S. Graf. Construction of abstract state graphs with PVS. In CAV,
pages 72–83, 1997.

13

