Circular compositional reasoning about liveness

K. L. McMillan

Cadence Berkeley Labs

Abstract. Compositional proofs about systems of many components
often involve apparently circular arguments. That is, correctness of com-
ponent A must be assumed when verifying component B, and vice versa.
The apparent circularity of such arguments can be resolved by induction
over time. However, previous methods for such circular compositional
proofs apply only to safety properties. This paper presents a method
of circular compositional reasoning that applies to liveness properties as
well. It is based on a new circular compositional rule implemented in
the SMV proof assistant. The method is illustrated using Tomasulo’s
algorithm for out-of-order instruction execution. An implementation is
proved live for arbitrary resources using compositional model checking.

1 Introduction

Compositional model checking methods [7, 4] reduce the verification of large systems
to smaller, localized verification problems. This is necessary because model checking is
limited by the “state explosion problem”. When reasoning compositionally about two
processes A and B, it is often necessary to assume correctness of A to verify B and vice
versa. The apparent circularity of such arguments can be resolved by induction over
time. However, existing methods for such circular compositional proofs [2,3,7] apply
only to safety properties. Nonetheless, mutual dependence of liveness properties does
occur in real systems. Consider, for example, the problem of multiple execution units
in an instruction set processor. At some times, the instruction in unit A may depend on
the result of the instruction in unit B, and at other times the inverse relation may hold.
Thus, in order to prove that unit A is live (always eventually produces a result), we
must assume the B is live, and vice versa. Here, we introduce a compositional technique
that allows this kind of circular compositional reasoning. In essence, it makes explicit
the induction over time implied in the above approach, by assuming property P only
up to time ¢t — 1 when proving Q at time ¢, and vice versa. This condition (Q up to
t — 1 implies P up to t) is expressible in temporal logic. Thus, the proof obligations
incurred using this method can be discharged by model checking. This proof method
has been integrated with others in a proof assistant based on the SMV model checking
system. The integration of the circular proof rule with various reduction techniques,
including symmetry reduction, temporal case splitting and data type reduction makes
it possible to verify liveness of systems with unbounded arrays, as we illustrate, using
Tomasulo’s algorithm as an example. The approach is only sketched here — a more
extensive treatment can be found in [1].

2 Circular compositional proofs

Using the standard linear temporal logic (LTL) as our framework, we will formalize
an inference rule for circular compositional reasoning. Note that there is no notion of
process or process composition in this system. As in, for example, TLA [5], a process
is simply viewed as a temporal proposition.



Now, suppose that we have a collection of formulas P, and we would like to prove
Gp for all p € P. We first fix a well founded order < on the formulas in P. Intuitively,
if p < p’ then we may assume p up to time ¢ when proving p’ at time ¢, otherwise
we may assume p only up to time ¢t — 1. For any proposition p € P, we denote by
A, the set of propositions assumed up to time ¢ when proving p, and by @, the set
assumed at time ¢. Every element of @, must be less than p, according to <. However,
any p' € P (including p itself) may be an element of A,. This is what allows us to
construct (apparently) circular arguments. The notion that “p’ up to time ¢ — 1 implies
p at time t” can be expressed in as a formula in LTL, as in the following theorem:

Theorem 1. Given sets I', P of formulas, a well founded order < on P, and, for all
p € P, sets Ay, C Op C P, such that q € Ay, implies g < p, if

|= I'= (A4, U (0p A -p))

for allp € P, then |= Gp for allp € P.

That is, to prove Gp for all p, it suffices to prove I' = =(A, U (O, A —p)) for all p.
Note that the latter are linear temporal formulas whose validity we can verify by model
checking methods.

Proof graphs The SMV system applies the above theorem in the context of a proof
graph. This supports both assumption/guarantee style reasoning, where we assume A
at all time to prove B at all time, and circular compositional reasoning, where we
assume A only up to time ¢ or t — 1. A proof graph is a directed graph (V, E), where
the vertices V are the propositions to be proved, and an edge (p,p’) € FE indicates
that proposition p is to be assumed when proving p’. A subset ET C E of the edges
are identified as unit delay edges. If (p,p') € ET, then p is assumed only up to time
t — 1 when proving p’ at time ¢. Although the proof graph may be cyclic, the graph
(V, E\ E¥) must have no infinite backward paths. If V' is finite, this means that every
cycle must contain at least one unit delay edge. Each strongly connected component
of (V, E) corresponds to an application of theorem 1. Thus, every formula on a cycle
must be of the form Gp, so that we may apply the theorem. Formulas not on a cycle
may be of any form, however.

Proof obligations are constructed as follows. Suppose that some proposition Gp € V'
is on a cycle. Let C be the strongly connected component containing Gp. Let A, be the
set of all propositions Gp’ € C such that (Gp',Gp) € E. Let ©, be the subset of these
such that (Gp',Gp) € E*. Let I', be the set of propositions g, such that (¢, Gp) € E
and g € C. On the other hand, if a proposition ¢ is not on a cycle, then let I be the
set of ¢’ such that (¢',q) € E.

Theorem 2. Let C be the union of the strongly connected components of (V, E). If
— forallGpeC:o I, = ~(A, U (@, A-p))
—forallqg¢C:o0=T,=q

then for allp € V: o |= p.

In order to apply circular compositional reasoning in SMV, we have only to supply
the set of properties to be proved and the proof graph. From these, the above theorem
can be used to construct a sufficient set of proof obligations in the form of LTL formulas.

3 Verifying a version of Tomasulo’s algorithm

As an example, we now consider how the circular compositional approach can be used
to prove liveness of an implementation of Tomasulo’s algorithm. This design, and its
functional verification are described elsewhere in this volume [6]. Here, we assume



familiarity with that material, and consider only the verification of liveness. In fact,
the liveness proof follows the structure of the functional proof almost exactly.

We prove that an instruction in any reservation station eventually terminates. As
in the functional proof, the first step is to break the problem into two lemmas. The
first lemma states that the operands required by an instruction in a reservation station
eventually arrive. The second states that the result of an instruction in a reservation
station eventually returns on the result bus (that is, the reservation station is eventually
cleared). We use operand liveness to prove result liveness and vice versa. Here is the
SMV specification of the operand liveness lemma (for the opra operand):

forall (i in TAG)

livela[i] : assert G (st[i].valid -> F st[i].opra.valid);
That is, for all reservation stations i, if station ¢ is valid (contains an instruction) then
its opra operand will eventually be valid (hold a value and not a tag). A similar lemma
is stated for the oprb operand. The result liveness lemma is just as simply stated:
forall (i in TAG)
live2[i] : assert G (st[i].valid -> F ~“st[i].valid);

That is, for all reservation stations 4, if station ¢ is valid it is eventually cleared. Note
that the reservation station is cleared when its result returns on the result bus.
Operand liveness We use the same case splits for the liveness proof as for the
functional proof. That is, to prove liveness of operands arriving at consumer reservation
station k, we consider a particular producer reservation station ¢ and a particular
intermediate register j. To prove a given case, we need to use only reservation stations
1 and k, and register j. This case split is specified in SMV as follows (for the opra
operand):

forall(i,k in TAG; j in REG)

subcase livelalk][i][j] of livelalk]
for st[k].opra.tag = i & aux[i].srca = j;

To prove that operands of consumer reservation station k eventually arrive, we have
to assume that the producer reservation station 7 eventually produces a result. On the
other hand, we also have to assume that the operands of an instruction eventually
arrive in order to prove that it eventually produces a result. This is where the circular
compositional rule comes into play. Note that the producer instruction always enters
the machine at least one time unit before the consumer instruction. Thus, to prove
that the consumer operand eventually arrives for instructions arriving at time ¢, it is
sufficient to assume that results eventually arrive for producer instructions arriving up
to time ¢ — 1. Thus, we add a unit arc to the proof graph, as follows (for the opra
operand):

forall (i,k in TAG; j in REG) using (live2[i]) prove livelal[k] [i][j];
That is, when proving livelalk] [i] [j] at time ¢, we assume live2[i] up to time
t —1 (parentheses indicate the unit delay). As in the functional verification, the default
data type reductions automatically eliminate all but reservation stations ¢, k and reg-
ister j, and also reduce the types of register indices and tags to two and three values
respectively. Symmetry automatically reduces the n® cases we need to verify to just 2
representative cases (for ¢ = k and i # k).
Result liveness For the result liveness lemma, we again consider the possible paths
of a data item from producer to consumer. In this case, operands are sent from reser-
vation station ¢ to some execution unit j. The result then returns on the result bus
tagged for reservation station ¢, which in turn clears the reservation station. We would
therefore like to split into cases based on the execution unit. This presents a problem,



since at the time the instruction enters the reservation station, the execution unit is not
yet determined. Nonetheless, it is possible to split cases on a future value of variable,
using the following declaration:

forall(i in TAG; j in EU)

subcase live2[i][j] of live2[i]
for (aux[i].eu = j) when st[i].issued;

That is, for each execution unit j, a result must eventually arrive if the instruction will
be in execution unit j at the next time the reservation station is found to be in the
issued state. Note that when simply is a derived temporal operator. SMV recognizes
that at any time v = i when q must be true for at least one value of 4, and thus that
the given set of cases is complete.

To prove that the instruction in a given execution unit eventually terminates, we
must assume that its operands eventually arrive. Thus, we add the following arcs to
the proof graph:

forall (i in TAG; j in EU) using livelal[il, livelb[il] prove live2[il[j];
Note that here, we do not use a unit delay arc. This is allowable, since all the cycles in
the proof graph are broken by a unit delay arc. Note, we must also apply appropriate
fairness constraints to the arbiters in the design to prove liveness. This is discussed in
detail in [1].
Verification The result of applying the above described proof decomposition is a set
of proof subgoals that can be solved by model checking. Our implementation is shown
to satisfy the given lemmas for an arbitrary number of registers, reservation stations,
and execution units. All told, there are 5 model checking subgoals, with a maximum
of 20 state variables. The overall verification time (including the generation of proof
goals and model checking) is 3.2 CPU seconds (on 233MHz Pentium II processor).

4 Conclusions

Mutual dependence of liveness properties does occur in practice, for example in proces-
sors with multiple execution units. The standard assumption/guarantee approach to
compositional verification cannot be followed in such a situation. However, we can use
an appropriate circular compositional rule, combined with model checking, to prove
such mutually dependent liveness properties by induction over time. Such a rule was
obtained by extending the technique for safety verification in [7].

References

1. http://www-cad.eecs.berkeley.edu/ kenmcmil /papers/1999-02.ps.gz, Feb. 1999.

2. M. Abadi and L. Lamport. Composing specifications. ACM Trans. on Prog. Lang.
and Syst., 15(1):73-132, Jan. 1993.

3. R. Alur and T. A. Henzinger. Reactive modules. In 11th annual IEEE symp. Logic
in Computer Science (LICS ’96), 1996.

4. R. Alur, T. A. Henzinger, F. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran.
Mocha: Modularity in model checking. In CAV ’98, number 1427 in LNCS, pages
521-25. Springer-Verlag.

5. L. Lamport. The temporal logic of actions. Research report 79, Digital Equipment
Corporation, Systems Research Center, Dec. 1991.

6. K. L. McMillan. Verification of infinite state systems by compositional model check-
ing. this volume.

7. K. L. McMillan. Verification of an implementation of Tomasulo’s algorithm by
compositional model checking. In CAV ’98, number 1427 in LNCS, pages 100-21.
Springer-Verlag, 1998.



