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Abstract. We describe a model checker for infinite-state sequential pro-
grams, based on Craig interpolation and the lazy abstraction paradigm.
On device driver benchmarks, we observe a speedup of up to two orders
of magnitude relative to a similar tool using predicate abstraction.

1 Introduction

Craig interpolants derived from proofs have been shown to provide an efficient
method of image approximation in finite-state symbolic model checking [10]. In
this paper, we extend the interpolation-based model checking approach from
finite- to infinite-state systems, in particular to the verification of sequential
programs. The approach applies an interpolating prover [11] in the lazy abstrac-
tion paradigm [7]. Instead of iteratively refining an abstraction, lazy abstraction
refines the abstract model on demand, as it is constructed. Up to now, this
refinement has been based on predicate abstraction [12]. Here, we refine the ab-
straction using interpolants derived from refuting program paths. This avoids
the high cost of computing the predicate image (or abstract “post”) operator,
yielding a substantial performance improvement.

To illustrate the algorithm, we will use the simple C fragment of Figure 1
(borrowed from [7]). We model the functions lock and unlock by setting and
resetting a variable L representing the state of the lock. We would like to prove
that L is always zero on entry to lock. A control-flow graph for the function is
shown in the figure. We have initialized L to zero and added a transition to an
error state when lock is called and L is non-zero. Our algorithm unwinds the
control-flow graph of the program into a tree. Each vertex in the tree corresponds
to a program control location, and is labeled with a fact about the program
variables that is true at that point in the execution of the program. Each vertex
is initially labeled True. When we reach a vertex corresponding to the error
location, we strengthen the facts along the path to that vertex, so as to prove
the error vertex unreachable.

For example, suppose we first expand the path that branches to the error
location on entering the loop (Figure 2a). We wish to label the error vertex
False, thus proving it unreachable. This is done by generating an interpolant
for the path to the error state. An interpolant for a path is a sequence of for-
mulas assigned to the vertices, such that each formula implies the next after
executing the intervening program operation, and such that the initial vertex is
labeled True and the final vertex False. Existence of an interpolant implies



do{
lock();
old = new;
if(*){
unlock;
new++;

}
} while (new != old);

L=0

L=1;
old=new

[L!=0]

L=0;
new++

[new==old]

[new!=old]

(a)  program fragment (b)  control-flow graph
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Fig. 1. A simple example program
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Fig. 2. Stages of the unwinding (vertex labels in italics)

that the final (error) vertex is unreachable. An interpolant can be derived from
a refutation of the path generated by a theorem prover [11, 6]. In Figure 2a, an
interpolant would be: True,L = 0,False. In Figure 2b, we have strengthened
the labeling on the error path with this interpolant (ruling out the error) and
backtracked to explore the non-error branch. We pass through the loop, calling
lock and unlock, then return to the top, taking the error branch again. In this
case, our interpolant labels vertices 4 and 5 with L = 0 (again labeling the error
vertex False). Notice that vertices 5 and 1 correspond to the same location (the
top of the loop) and that the label of vertex 5 implies the label of vertex 1. We
say that vertex 1 covers vertex 5, and we cease expanding descendants of the
covered vertex. However, if vertex 1 were to be strengthened in the future, it
might cease to cover vertex 5, and we would have to continue expanding it.

Figure 2c shows the remainder of the unwinding, indicating coverings with
dotted lines. We backtrack, expanding the path that falls out of the loop, and
then the path that skips the call to unlock. In the latter case, we again reach
an error state, strengthening the path. This labels vertex 9 with False, thus
it is also covered by vertex 1. At this point all unexpanded states are covered,
so the procedure terminates. At termination, the disjunction of the labels for a
given location is an invariant for that location. Notice also that the labels use
the atomic predicates L = 0 and old = new, but are not the strongest facts ex-
pressible using those predicates (as we would obtain with predicate abstraction).
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Rather, they are just strong enough to allow us to label the error vertices False.
Notice that we could also strengthen a path by computing strongest postcondi-
tions or weakest preconditions along the path (these are, in fact, the strongest
and weakest interpolants respectively). However, by deriving interpolants from
proofs, we exploit the prover’s ability to focus on relevant facts, and thus avoid
deducing irrelevant information that could complicate the analysis, or even lead
to divergence.

Related work The most closely related technique is predicate abstraction [12].
This is implemented using the lazy paradigm in the Blast model checker [7],
and in a number of software model checkers [2, 4, 3] using a counterexample-
based refinement loop. The advantage of the present method over predicate
abstraction is that it avoids computing the abstract “post” operator. That is,
in predicate abstraction, computing the set of successors of a set of abstract
states requires an exponential number of calls to a decision procedure in the
worst case. Because of this, weak approximations are typically used, such as
the Cartesian or “Boolean Programs” approximations [1], with the associated
need for refinement in case of failures. Even with approximations, computing the
abstract post operator (or abstract transition relation) is still the dominant cost.
By contrast, the present method requires just one call to a decision procedure
for each error vertex reached, and one for each covering test.

The method is also closely related to the interpolation-based model check-
ing method of [10]. That work only treated finite-state systems. In principle the
method could be generalized to infinite-state programs, however it would require
applying a decision procedure to an unfolding of the entire program up to some
depth k. This would almost certainly be impractical. Using the lazy abstrac-
tion method, we only apply the decision procedure to individual program paths
leading to error locations, greatly reducing the burden on the prover.

Outline of the paper In section 2, we will formalize the lazy interpolation-
based model checking procedure, proving some results about soundness and ter-
mination. Then in section 3, we describe an implementation of the procedure
in a software model checking tool called Impact, and compare the performance
of this tool to the lazy predicate abstraction approach implemented in Blast.
Experiments using a small set of device driver benchmarks show a performance
improvement of one to two orders of magnitude using the new method. Finally
in section 4, we conclude and consider some future directions for research.

2 Lazy interpolant-based model checking

Throughout this paper, we will use standard first-order logic (FOL) and the
notation L(Σ) to denote the set of well-formed formulas (wff’s) of FOL over a
vocabulary Σ of non-logical symbols. For a given formula or set of formulas φ,
we will use L(φ) to denote the wff’s over the vocabulary of φ.
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For every non-logical symbol s, we presume the existence of a unique sym-
bol s′ (that is, s with one prime added). We think of s with n primes added
as representing the value of s at n time units in the future. For any formula or
term φ, we will use the notation φ〈n〉 to denote the addition of n primes to every
symbol in φ (meaning φ at n time units in the future). For any set Σ of symbols,
let Σ′ denote {s′ | s ∈ Σ} and Σ〈n〉 denote {s〈n〉 | s ∈ Σ}.

Modeling programs We use FOL formulas to characterize programs. To this
end, let S, the state vocabulary, be a set of individual variables and uninterpreted
n-ary functional and propositional constants. A state formula is a formula in
L(S) (which may also include various interpreted symbols, such as = and +). A
transition formula is a formula in L(S ∪ S′).

For our purposes, a program is a tuple (Λ,∆, li, lf ), where Λ is a finite set
of program locations, ∆ is a set of actions, li ∈ Λ is the initial location and
lf ∈ Λ is the error location. An action is a triple (l, T,m), where l,m ∈ Λ
are respectively the entry and exit locations of the action, and T is a transition
formula. A path π of a program is a sequence of transitions of the form (l0, T0, l1)
(l1, T1, l2) · · · (ln−1, Tn−1, ln). The path is an error path when l0 = li and ln = lf .
The unfolding U(π) of path π is the sequence of formulas T 〈0〉0 , . . . , T

〈n−1〉
n , that

is, the sequence of transition formulas T0 . . . Tn−1, with each Ti shifted i time
units into the future.

We will say that path π is feasible when
∧
U(π) is consistent. We can think

of a model of
∧
U(π) as a concrete program execution, assigning a value to every

program variable at every time 0 . . . n. A program is said to be safe when every
error path of the program is infeasible. An inductive invariant of a program is
a map I : Λ→ L(S), such that I(li) ≡ True and for every action (l, T,m) ∈ ∆,
I(l)∧T implies I(m)′. A safety invariant of a program is an inductive invariant
such that I(lf ) ≡ False. Existence of a safety invariant of a program implies
that the program is safe.

To simplify presentation of the algorithms, we will assume that every loca-
tion has at least one outgoing action. This can be made true without affecting
program safety by adding self-loops.

Interpolants from proofs Given a pair of formulas (A,B), such that A ∧
B is inconsistent, an interpolant for (A,B) is a formula Â with the following
properties:

– A implies Â,
– Â ∧B is unsatisfiable, and
– Â ∈ L(A) ∩ L(B).

The Craig interpolation lemma [5] states that an interpolant always exists for
inconsistent formulas in FOL. To handle program paths, we generalize this idea
to sequences of formulas. That is, given a sequence of formulas Γ = A1, . . . , An,
we say that Â0, . . . Ân is an interpolant for Γ when
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– Â0 = True and Ân = False and,
– for all 1 ≤ i ≤ n, Âi−1 ∧Ai implies Âi and
– for all 1 ≤ i < n, Âi ∈ (L(A1 . . . Ai) ∩ L(Ai+1 . . . An)).

That is, the i-th element of the interpolant is a formula over the common vo-
cabulary the prefix A0 . . . Ai and the suffix Ai+1 . . . An, and each interpolant
implies the next, with Ai. If Γ is quantifier-free, we can derive a quantifier-free
interpolant for Γ from a refutation of Γ , in certain interpreted theories [11].

Program unwindings We now give a definition of a program unwinding, and
an algorithm to construct a complete unwinding using interpolants. For two
vertices v and w of a tree, we will write w < v when w is a proper ancestor of v.

Definition 1. An unwinding of a program A = (Λ,∆, li, lf ) is a quadruple
(V,E,Mv,Me), where (V,E) is a directed tree rooted at ε, Mv : V → Λ is the
vertex map, and Me : E → ∆ is the edge map, such that:

– Mv(ε) = li
– for every non-leaf vertex v ∈ V , for every action (Mv(v), T,m) ∈ ∆, there

exists an edge (v, w) ∈ E such that Mv(w) = m and Me(v, w) = T .

Definition 2. A labeled unwinding of a program A = (Λ,∆, li, lf ) is a triple
(U,ψ, .), where

– U = (V,E,Mv,Me) is an unwinding of A
– ψ : V → L(S) is called the vertex labeling, and
– . ⊆ V × V is called the covering relation.

A vertex v ∈ V is said to be covered iff there exists (w, x) ∈ . such that w v v.
The unwinding is said to be safe iff, for all v ∈ V , Mv(v) = lf implies ψ(v) ≡
False. It is complete iff every leaf v ∈ V is covered.

Definition 3. A labeled unwinding (U,ψ, .) of a program A = (Λ,∆, li, lf ),
where U = (V,E,Mv,Me), is said to be well-labeled iff:

– ψ(ε) ≡ True, and
– for every edge (v, w) ∈ E, ψ(v) ∧Me(v, w) implies ψ(w)′, and
– for all (v, w) ∈ ., ψ(v) ⇒ ψ(w), and w is not covered.

Notice that, if a vertex is covered, all its descendants are also covered. More-
over, we do not allow a covered vertex to cover another vertex. To see why,
consider the unwinding of Figure 3. Here, vertex y covers x, but is itself covered,
since its ancestor v is covered by w. This might seem acceptable, since any states
reachable from y should be reachable from w through its descendant z. However,
this is not the case. Because the vertex labels are approximate, it may be that
ψ(y) 6⇒ ψ(z). Thus, z may not reach all states reachable from x.

Theorem 1. If there exists a safe, complete, well-labeled unwinding of program
A, then A is safe.
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Fig. 3. Example showing why covered vertices must not cover others.

global variables: V a set, E ⊆ V × V , . ⊆ V × V and ψ : V → wff

procedure Expand(v ∈ V ):
if v is an uncovered leaf then

for all actions (Mv(v), T,m) ∈ ∆
add a new vertex w to V and a new edge (v, w) to E;
set Mv(w)← m and ψ(w)← True;
set Me(v, w)← T

procedure Refine(v ∈ V ):
if Mv(v) = lf and ψ(v) 6≡ False then

let π = (v0, T0, v1) · · · (vn−1, Tn−1, vn) be the unique path from ε to v

if U(π) has an interpolant Â0, . . . , Ân then
for i = 0 . . . n:

let φ = Â
〈−i〉
i

if ψ(vi) 6|= φ then
remove all pairs (·, vi) from .
set ψ(vi)← ψ(vi) ∧ φ

else abort (program is unsafe)

procedure Cover(v, w ∈ V ):
if v is uncovered and Mv(v) = Mv(w) and v 6v w then

if ψ(v) |= ψ(w) then
add (v, w) to .;
delete all (x, y) ∈ ., s.t. v v y;

Fig. 4. Three basic unwinding steps

Proof. Let U be the set of uncovered vertices, and let functionM map location
l to

∨
{ψ(v) | Mv(v) = l, v ∈ U}. M is a safety invariant for A. 2.

We now describe a semi-algorithm for building a complete, safe, well-labeled
unwinding of a program. The algorithm terminates if the program is unsafe,
but may not terminate if it is safe (which is expected, since program safety is
undecidable). We first outline a non-deterministic procedure with three basic
steps: Expand, which generates the successors of a leaf vertex, Refine, which
refines the labels along a path, labeling an error vertex False, and Cover,
which expands the covering relation. These steps are shown in Figure 4.

The interpolant in Refine can be generated from a refutation of U(π), by
the method of [11]. Each of the three steps preserves well-labeledness of the
unwinding. In Refine, the first two well-labeledness conditions are guaranteed
by the properties of interpolants (i.e., Â0 = True and each interpolant formula
implies the next). When we strengthen ψ(v), we remove all arcs (·, v) in the
covering relation, since a vertex covered by v may no longer be covered after
strengthening v. In Cover, if a vertex v becomes covered, then all descendants
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of v are also covered. This means that any existing covering arcs (x, y) where
v v y must be removed to maintain well-labeledness. If Refine succeeds, then
ψ(v) must be False (since Ân is always False). Thus, to make the unwinding
safe, we have only to apply Refine to every error vertex. Finally, when none of
the three steps can produce any change, the unwinding is both safe and complete,
so we know the original program is safe.

To build a well-labeled unwinding, we now have only to choose a strategy for
applying the three unwinding rules. The most difficult question is when to apply
Cover. Covering one vertex can result in uncovering others. Thus, applying
Cover non-deterministically may not terminate. To avoid this possibility, we
define a total order ≺ on the vertices. This order must respect the ancestor
relation. That is, if v < w then v ≺ w. For example, we could define ≺ by a
pre-order traversal of the tree, or by numbering the vertices in order of creation.
We then restrict Cover to pairs (v, w) such that w ≺ v. Now suppose that in
adding a covering arc (v, w), we remove (x, y), where v v y. Then by transitivity,
we must have v ≺ x. Thus, covering a vertex v can only result in uncovering
vertices greater than v. This implies that we cannot apply Cover infinitely.

We will say that a vertex v is closed if either it is covered, or no arc (v, w)
can be added to . (while maintaining well-labeledness). The procedure Close
of Figure 5 closes a vertex. We would like to guarantee that when a vertex is
expanded, all of its ancestors are closed, thus we do not expand a vertex that
could be covered instead. We could, of course, call Close on all the ancestors of
a vertex v before expanding it. This would be costly, however. A more efficient
strategy is shown in Figure 5. The procedure Unwind locates an uncovered leaf,
then performs a local depth-first search around that leaf. During the search, it
maintains the invariant that all ancestors of the currently visited leaf vertex v
are closed. Moreover, all the vertices on the DFS stack are children of ancestors
of v. Thus, when we pop a vertex off of the stack, we have only to call Close
on the new vertex to re-establish the invariant. After calling Refine on an error
vertex, the procedure calls Close on all of the ancestors v. This can be improved
somewhat by only re-closing those vertices that were actually strengthened by
Refine.

Theorem 2. If procedure Unwind terminates without aborting on program A,
then A is safe.

Proof. Since only the operations Expand, Refine and Cover alter the
unwinding, and these preserve well-labeledness, the resulting unwinding is well-
labeled. Further, since all error vertices are refined, the unwinding is safe. Since
the procedure terminates only when there are no uncovered leaves, the final
unwinding is complete. Thus, by Theorem 1, program A is safe. 2.

Termination Due to decidability considerations, we do not expect the unwind-
ing to terminate in all cases. However, in the finite-state case, or in general when
the language L(S) has bounded ascending chains, we can show termination. A
finite ascending chain is a sequence of formulas φ0, φ1, . . . , φn such that for all
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procedure Close(v ∈ V ):
for all w ∈ V s.t. w ≺ v and Mv(w) = Mv(v):

Cover(v, w)

recursive procedure DFS(v ∈ V ):
Close(v)
if v is uncovered then

if Mv(v) = lf then
Refine(v);
for all w v v: Close(w)

Expand(v);
for all children w of v: DFS(w)

procedure Unwind:
set V ← {ε}, E ← ∅, ψ(ε)← True, .← ∅
while there exists an uncovered leaf v ∈ V :

for all w ∈ V s.t. w < v: Close(w);
DFS(v)

Fig. 5. DFS unwinding strategy

0 ≤ i < j ≤ n, φj 6⇒ φi. We will say that a language L is k-bounded, for
integer k, if all ascending chains in L have length at most k. For example, the
Boolean formulas over n variables are 2n + 1-bounded.

Theorem 3. If L(S) is k-bounded, then procedure Unwind terminates or aborts.

Proof. Procedure DFS maintains the invariant that all ancestors of v are
closed. Thus, there are no x < w v v such that Mv(x) = Mv(w) and ψ(w) ⇒
ψ(x) (else w would not be closed). Thus, for any location l, the formulas φ(w)
where Mv(w) = l and w v v form an ascending chain. Since L(S) is k-bounded,
it follows that the path from ε to v contains at most |Λ|·k vertices. Thus the depth
of the tree is bounded. As argued above, Cover cannot continue to cover vertices
infinitely. Thus, in the main loop, always eventually Close fails to cover a new
vertex, or the loop terminates. In the former case, vertex v remains uncovered,
and is thus expanded in procedure DFS. However, we cannot expand vertices
infinitely, since the tree depth is bounded. Thus, the loop must terminate (or
abort in Refine). 2

A weak notion of completeness In general, the FO formulas over a given vo-
cabulary S have infinite ascending chains. Thus, the above termination result is
not generally applicable. However, by restricting the language of the interpolants,
we can force termination (perhaps without deciding safety). That is, given a lan-
guage L, an L-restricted interpolant for a sequence Γ is an interpolant for Γ in
which all formulas are contained in L. Techniques for computing L-restricted
interpolants are described in [9]. Given a language L, let us define an unwinding
procedure Unwind(L) that differs from Unwind only in that “interpolant” in
procedure Refine is replaced by “L-restricted interpolant”. If language L is k-
bounded, then Unwind(L) must terminate or abort. Moreover, in [9] it is shown
that if program A has an inductive invariant expressible in L, then every error
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procedure ForceCover(v, w ∈ V )
let x be the nearest common ancestor of v and w
let π = (v0, T0, v1) · · · (vn−1, Tn−1, vn) be the unique path from x to v

let Γ = ψ(x) · U(π) · ¬ψ(w)〈n〉

if Γ has an interpolant Â0, . . . , Ân+2 then
for i = 0 . . . n:

let φ = Â
〈−i〉
i+1

if ψ(vi) 6|= φ then
remove all pairs (·, vi) from .
set ψ(vi)← ψ(vi) ∧ φ

Fig. 6. Procedure to force covering of one vertex by another

path of A has an L-restricted interpolant. Thus Unwind(L) cannot abort, and
must terminate proving safety.

We can use this idea to create a procedure that is complete in the limited
sense that it eventually verifies all programs that have inductive invariants ex-
pressible as quantifier-free formulas in a suitable FO theory. That is, we define
an infinite chain of k-bounded, quantifier-free restriction languages L0 ⊆ L1 · · ·,
such that every formula is contained in some Lk.1 If a program has a quanti-
fier free safety invariant in the theory, then it has an invariant in some Lk. We
start with L0 and each time Unwind(Li) aborts, we move on to Li+1. When we
reach Lk, the Unwind(Lk) must terminate. Thus, our approach is complete in
the limited sense that it verifies (eventually) any program with a quantifier-free
safety invariant in the theory (this is precisely the set of programs that we can
verify with predicate abstraction if we can guess the right atomic predicates).
Of course, in practice we must choose the restriction languages Lk carefully, so
that termination occurs for a small value of k.

Forced covering To speed convergence of the unwinding procedure, we can
use interpolant-based refinement to force a vertex v to be covered by some other
vertex w. We will call this a forced covering. Suppose that v and w have nearest
common ancestor x in the unwinding. We construct the characteristic formula for
the path from x to v, asserting ψ(x) at the beginning, and ¬ψ(w) at the end. If
this is infeasible (meaning ψ(w) must hold at v) we strengthen all the vertices on
the path from x to v by the corresponding interpolant formulas. Thus, we ensure
that w covers v. This procedure is depicted in Figure 6. Clearly, attempting all
possible forced coverings could be costly. In practice, before expanding a vertex
we attempt a forced covering by a few recently generated vertices representing
the same program location. This substantially reduces the part of the unwinding
that we must explore.

Other optimizations As in other work using interpolants [6, 8], we generate
the characteristic formula of a path in static single-assignment (SSA) form. That

1 Quantifier-freeness is required so that the entailment tests in Refine and Close are
decidable. Otherwise completeness is relative to an oracle for the theory.
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is, we create a new instance of a program variable only when that variable is
modified. This eliminates a large number of constraints of the form x〈i+1〉 = x〈i〉

that occur when a variable is unmodified by a program statement.When refining
a program path, we also use a simple slicing (or “cone-of-influence” reduction) to
remove from the program path any assignments that cannot affect the feasibility
of the path. Slicing typically removes a large fraction of the assignments in
the path, especially initializations of global variables that are not referenced.
It should be noted, however, that slicing can affect completeness, since it is
possible that a variable that is not referenced is nonetheless necessary to express
an inductive invariant (it might even be an auxiliary variable added by the user
for this purpose). In practice, however, this has not been observed to occur, and
slicing yields a substantial performance improvement.

Finally, in the Refine and Cover steps, we must test whether one formula
entails another, using a decision procedure. Since the same test tends to occur
many times, it pays to memoize the decision procedure calls.

3 Experiments

The lazy interpolation-based unwinding procedure is implemented in a soft-
ware model checking tool called Impact2 (carrying on the tradition of vio-
lent acronyms for software model checkers). In this section, we compare the
interpolant-based method of Impact with the predicate abstraction approach of
Blast. The benchmarks we use are device drivers from the Microsoft Windows
DDK, written in C. They were used as test cases in [6]. Each driver is pro-
vided with a test harness (i.e., a main program that calls the driver functions
appropriately in a non-deterministic manner) and is instrumented with auxil-
iary variables and safety assertions that test whether whether certain rules are
obeyed in calling the kernel API functions.3 All six of the example programs are
safe. To check the implementation of Impact, however, we inserted three errors
into each example program. Impact detected all 18 errors, each in at most a few
seconds. Performance data are reported only for the safe versions.

Impact is based on the interpolating prover of [9]. This prover supports
a first-order theory with equality, uninterpreted function symbols, and integer
difference-bound arithmetic (i.e., predicates of the form x − y ≤ c, x ≤ c or
x ≥ c, where c is a constant). It also supports first-order arrays, with interpreted
“select” and “store” functions. Support for full linear arithmetic is also possible,
but currently not for integer models.

To handle C programs, we first reduce them to Simple Goto Programs (SGP’s).
These are programs containing only conditional goto statements, assignments
and assertions, and whose only data types are unbounded integers and arrays
of unbounded integers. Pointers and records are eliminated by this translation,
and function calls are in-lined. This reduction was done using a modified ver-

2 Interpolating software Model checker without Predicate abstrACTion
3 Benchmarks available from the author.
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sion of the SATABS infrastructure [4]. Unfortunately, space does not permit a
description of the translation process here.

Once a C program has been translated to a simple goto program, we can
model it formally in the logic of the prover. The logic contains operations on ar-
rays, as well as limited arithmetic. We model the unsupported integer operations
(such as the bit-wise operators) with uninterpreted functions (thus we may fail
to prove safety if it depends on properties of these operators). An assertion in the
program is modeled by a conditional branch to the error state lf . Transitions in
the model correspond to basic blocks in the goto program. Having modeled the
program, we can then verify safety using procedure Unwind(L), where L is the
restriction language for interpolation. We use the same sequence of restriction
languages Lk as in [9]. This restricts the constants in arithmetic formulas to fall
in a certain finite set that depends on k, and also restricts depth of function
symbol nesting as a function of k. In fact, all of the example programs can be
verified with restriction language L0.

For comparison to predicate abstraction approach, we use the Blast soft-
ware model checker [7]. This tool is in some ways a good comparison, since it is
also based on the “lazy abstraction” paradigm (using predicate abstraction in-
stead of interpolation to refine paths). In addition, it uses the same interpolating
prover to generate atomic predicates that Impact uses for path refinement. Thus
in principle both tools should be able to construct the same class of safety in-
variants. On the other hand, the implementations are independent, so observed
performance differences may be due in part to implementation efficiencies. In
principle the closest comparison could be obtained by running both programs
on the same SGP. However, as it turns out the performance of Blast was signif-
icantly better when run on the original C source code. This may be because the
elimination of pointers prevented the use of some pointer-based optimizations
in Blast. For this reason, we present performance numbers for Blast as run
on the original source code. We use the standard Blast option that assigns to
each new vertex all of the predicates that have been used for program locations
in the same function scope. This tends to increase the number of predicates at
each vertex, but reduces the number of refinements needed, thus yielding better
performance.4

Table 1 compares the run time performance of Blast and Impact on the six
device driver examples. The first three columns show the name of the example,
the number of textual lines in the source code, and the number of lines in the
SGP. The last probably provides a better representation of the code size, since
the source code contains much white space and many redundant declarations.
The next two columns provide the run times for Blast and Impact. Both are
run on a 3GHz Intel Xeon processor. These times represent only the model
checking process, and do not include time for parsing or translation to an SGP.
The next column shows the speedup of Impact relative to Blast. For the small

4 The Blast options used were -msvc -nofp -dfs -tproj -cldepth 1 -predH 6

-scope -nolattice -clock.
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source SGP Blast Impact Blast Blast Impact Blast Impact
name loc loc time(s) time(s) speedup preds post(s) interp(s) vtcs vtcs

kbfiltr 12K 2.3K 26.3 3.15 8.3 25 23.3 2.2 1651 744
diskperf 14K 3.9K 102 20.0 5.1 84 92.2 19.3 3232 3885
cdaudio 44k 6.3K 310 19.1 16.2 108 265 11.9 5253 3257
floppy 18K 8.7K 455 17.8 25.6 105 404 16.9 9573 2518
parclass 138K 8.8K 5511 26.2 210 162 5302 22.9 8612 3720
parport 61K 13K 8084 37.1 218 224 7965 31.0 63.5K 12.7K

Table 1. Performance statistics on device driver benchmarks

examples, Impact has about an order of magnitude advantage, which increases
to two orders of magnitude for the large examples.

The explanation for the performance difference may lie in the fact that the
abstract post computation becomes increasingly expensive as the programs get
larger and the number of predicates increases. The table shows some run-time
statistics that bear this out. Columns 7–9 show the number of atomic predicates
used by Blast, the amount of time spent by Blast in the predicate image com-
putation, and the amount of time spent by Impact in computing interpolants
for path refinement. It is clear that avoiding the predicate image computation
provides a significant advantage. The last two columns of the table show the
number of vertices in the final unwinding for both Blast and Impact. Blast
expands more vertices (though not enough to fully account for the performance
difference). This may be because the predicate images computed by Blast are
stronger than necessary. Thus Blast distinguishes states that need not be dis-
tinguished, resulting in a larger unwinding.

After this paper was originally submitted, Ranjit Jhala improved the perfor-
mance of Blast by making it less “lazy”. In this version, each new vertex in
the unwinding is assigned all the predicates seen thus far for the same program
location, or if there are none, then predicates of its parent. This slightly “eager”
approach greatly reduces the number of refinement steps. The reduction in re-
fienements makes it practical to use only the predicates from the same location,
rather than the same function scope, which reduces the number of predicates
per vertex and thus speeds the predicate image computation substantially. Ta-
ble 2 shows comparison data for this new version.5 The performance gap between
Blast and Impact is now considerably smaller (only one order of magnitude).
It could be that computing some state information in an eager manner would
reduce the number of refinement steps of Impact as well. We leave this question
for future research.

5 Blast options for this experiment were -msvc -nofp -craig 2 -scope -cldepth

1 -bfs except for cdaudio, which also required -clock. No single set of options was
able to verify all the examples.
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source SGP Blast Impact Blast Blast Impact Blast Impact
name loc loc time(s) time(s) speedup preds post(s) interp(s) vtcs vtcs

kbfiltr 12K 2.3K 11.9 3.15 3.8 38 6.6 2.2 1009 744
diskperf 14K 3.9K 117 20.0 5.9 119 49.8 19.3 1855 3885
cdaudio 44k 6.3K 202 19.1 10.6 180 114 11.9 3400 3257
floppy 18K 8.7K 164 17.8 9.2 154 77.9 16.9 2856 2518
parclass 138K 8.8K 463 26.2 17.7 242 175 22.9 5003 3720
parport 61K 13K 324 37.1 8.7 280 156 31.0 10.4K 12.7K

Table 2. Performance statistics for revised Blast.

4 Conclusion

We have described a method that uses interpolation rather than predicate ab-
straction in the lazy abstraction paradigm. This avoids the most costly opera-
tion of predicate abstraction, the abstract image computation. In contrast to the
interpolation-based model checking method of [10], it avoids constructing and
refuting an unfolding of the entire program. Instead, the interpolating prover is
applied only to individual program paths, greatly lessening the burden on the
prover. This makes it possible to apply the interpolation-based approach to the
verification of infinite-state sequential programs. For a small collection of device
driver examples, a run-time improvement of one to two orders of magnitude
was obtained, relative to the lazy predicate abstraction approach. Although a
greater variety of examples is clearly needed to study the trade-offs between
the two methods, the experiments show that the interpolation method has the
potential to provide a substantial performance improvement.

There are several potentially interesting topics for future research. Consider,
for example, the following simple C program fragment:

for(i = 0; i < n; i++) x[i] = 0;
for(i = 0; i < n; i++) assert(x[i] == 0);

A safety invariant of this program requires a universal quantifier over the index of
the array. Thus, predicate abstraction methods that use atomic predicates cannot
verify this program. However, in [11] it is shown that an interpolating prover can
be used to generate interpolants with quantifiers. This opens the possibility of
generating quantified inductive invariants with the present method. There are
several challenges involved in this. First the decision procedure must handle
quantified formulas. Since the validity of quantified formulas is undecidable,
we must have heuristics to instantiate quantifiers. Second, we must somehow
prevent the number of quantifiers in the interpolants from increasing without
bound. Although these problems remain to be solved, using a näıve approach to
quantifier instantiation it is possible to verify simple programs like the above.
Thus, it may be possible to use the method to verify properties that depend, for
example, on the contents of arrays.

It also seems possible that the interpolation approach can be made to scale
better by using function summaries, in an approach that might be called “sum-
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maries on demand”. If we refute a program path that contains the expansion of
a procedure call, we can derive an interpolant that is an over-approximation of
the transition relation of the procedure (in the same way that transition rela-
tion approximations are derived in [8]). This approximation can be used as an
abstraction (summary) of the procedure. When an error path is found not to be
refutable, it might be refined by expanding one or more summarized functions,
which would strengthen the summaries of the expanded functions. Thus, there
seems to be scope for both enriching the class of properties that can be verified,
and for improving the performance of the method on large programs.
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