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Abstract. In predicate abstraction, exact image computation is prob-
lematic, requiring in the worst case an exponential number of calls to
a decision procedure. For this reason, software model checkers typically
use a weak approximation of the image. This can result in a failure to
prove a property, even given an adequate set of predicates. We present an
interpolant-based method for strengthening the abstract transition rela-
tion in case of such failures. This approach guarantees convergence given
an adequate set of predicates, without requiring an exact image com-
putation. We show empirically that the method converges more rapidly
than an earlier method based on counterexample analysis.

1 Introduction

Predicate abstraction [15] is a technique commonly used in software model check-
ing in which an infinite-state system is represented abstractly by a finite-state
system whose states are the truth valuations of a chosen set of predicates. The
reachable state set of the abstract system corresponds to the strongest inductive
invariant of the infinite-state system expressible as a Boolean combination of the
given predicates.

The primary computational difficulty of predicate abstraction is the abstract
image computation. That is, given a set of predicate states (perhaps represented
symbolically) we wish to compute the set of predicate states reachable from this
set in one step of the abstract system. This can be done by enumerating the pred-
icate states, using a suitable decision procedure to determine whether each state
is reachable in one step. However, since the number of decision procedure calls is
exponential in the number of predicates, this approach is practical only for small
predicates sets. For this reason, software model checkers, such as SLAM [2] and
BLAST [16] typically use weak approximations of the abstract image. For exam-
ple, the Cartesian image approximation is the strongest cube over the predicates
that is implied at the next time. This approximation loses all information about
predicates that are neither deterministically true nor deterministically false at
the next time. Perhaps surprisingly, some properties of large programs, such as
operating system device drivers, can be verified with this weak approximation [2,
7]. Unfortunately, as we will observe, this approach fails to verify properties of
even very simple programs, if the properties relate to data stored in arrays.



This paper introduces an approach to approximating the transition relation of
a system using Craig interpolants derived from proofs of bounded model checking
instances. These interpolants are formulas that capture the information about
the transition relation of the system that was deduced in proving the property
in a bounded sense. Thus, the transition relation approximation we obtain is tai-
lored to the property we are trying to prove. Moreover, it is a formula over only
state-holding variables. Hence, for abstract models produced by predicate ab-
straction, the approximate transition relation is a purely propositional formula,
even though the original transition relation is characterized by a first-order for-
mula. Thus, we can apply well-developed Boolean image computation methods
to the approximate system, eliminating the need for a decision procedure in the
image computation. By iteratively refining the approximate transition relation
we can guarantee convergence, in the sense that whenever the chosen predi-
cates are adequate to prove the property, the approximate transition relation is
eventually strong enough to prove the property.3

Related work The most closely related method is that of Das and Dill [6].
This method analyzes abstract counterexamples (sequences of predicate states),
refining the transition relation approximation in such a way as to rule out in-
feasible transitions. This method is effective, but has the disadvantage that it
uses a specific counterexample and does not consider the property being veri-
fied. Thus it can easily generate refinements not relevant to the property. The
interpolation-based method does not use abstract counterexamples. Rather, it
generates facts relevant to proving the given property in a bounded sense. Thus,
it tends to generate more relevant refinements, and as a result converges more
rapidly.

In [7], interpolants are used to choose new predicates to refine a predicate
abstraction. Here, we use interpolants to refine an approximation of the abstract
transition relation for a given set of predicates.

The chief alternative to iterative approximation is to produce an exact propo-
sitional characterization of the abstract transition relation. For example the
method of [9] uses small-domain techniques to translate a first-order transition
formula into a propositional one that is equisatisfiable over the state-holding
predicates. However, this translation introduces a large number of auxiliary
Boolean variables, making it impractical to use BDD-based methods for im-
age computation. Though SAT-base Boolean quantifier elimination methods can

3 The reader should bear in mind that there are two kinds of abstraction occurring
here. The first is predicate abstraction, which produces an abstract transition system
whose state-holding variables are propositional. The second is transition relation
approzimation, which weakens the abstract transition formula, yielding a purely
propositional approximate transition formula. To avoid confusion, we will always
refer to the former as abstraction, and the latter as approxzimation. The techniques
presented here produce an exact reachability result for the abstract model. However,
we may still fail to prove unreachability if an inadequate set of predicates is chosen
for the abstraction.



be used, the effect is still essentially to enumerate the states in the image. By
contrast, the interpolation-based method produces an approximate transition re-
lation with no auxiliary Boolean variables, allowing efficient use of BDD-based
methods.

Outline In the next section, we introduce some notations and definitions re-
lated to modeling infinite-state systems symbolically, and briefly describe the
method of deriving interpolants from proofs. Then in section 3, we introduce
the basic method of transition relation approximation using interpolants. In the
following section, we discuss a number of optimizations of this basic method that
are particular to software verification. Section 6 then presents an experimental
comparison of the interpolation method with the Das and Dill method.

2 Preliminaries

Let S be a first-order signature, consisting of individual variables and unin-
terpreted n-ary functional and propositional constants. A state formula is a
first-order formula over S, (which may include various interpreted symbols, such
as = and +). We can think of a state formula ¢ as representing a set of states,
namely, the set of first-order models of ¢. We will express the proposition that
an interpretation o over S models ¢ by ¢[o].

We also assume a first-order signature S’, disjoint from S, and containing for
every symbol s € S, a unique symbol s’ of the same type. For any formula or term
¢ over S, we will use ¢’ to represent the result of replacing every occurrence of a
symbol s in ¢ with s’. Similarly, for any interpretation o over S, we will denote
by ¢’ the interpretation over S’ such that o’'s’ = as. A transition formula is a
first-order formula over SUS’. We think of a transition formula T as representing
a set of state pairs, namely the set of pairs (o1, 02), such that o1 Uo’ models T.
Will will express the proposition that o1 U ¢ models T by T'[o1, 09].

The strongest postcondition of a state formula ¢ with respect to transition
formula T, denoted spr(¢), is the strongest proposition ¢ such that ¢ A T im-
plies ¢'. We will also refer to this as the image of ¢ with respect to T. Simi-
larly, the weakest precondition of a state formula ¢ with respect to transition
formula T, denoted wp;(¢) is the weakest proposition ¢ such that ¥ AT im-
plies ¢'.

A transition system is a pair (I,T), where I is a state formula and T is a
transition formula. Given a state formula v, we will say that 1 is k-reachable
in (I,T) when there exists a sequence of states oo, ..., o, such that I[og] and
for all 0 < i < k, T[0;,0411], and ¢[ox]. Further, ¢ is reachable in (I,T) if it is
k-reachable for some k. We will say that ¢ is an invariant of (I,T) when —¢ is
not reachable in (I, T'). A state formula ¢ is an inductive invariant of (I,T) when
I implies ¢ and spp(¢) implies ¢ (note that an inductive invariant is trivially an
invariant).



Bounded model checking The fact that ¢ is k-reachable in (I,T) can be
expressed symbolically. For any symbol s, and natural number i, we will use the
notation s to represent the symbol s with ¢ primes added. Thus, s is s"’.
A symbol with i primes will be used to represent the value of that symbol at
time i. We also extend this notation to formulas. Thus, the formula ¢ is the
result of adding ¢ primes to every uninterpreted symbol in ¢.

Now, assuming T is total, the state formula v is k-reachable in (I,T) exactly
when this formula is consistent:

1O ATO A=) A k)

We will refer to this as a bounded model checking formula [3], since by test-
ing satisfiability of such formulas, we can determine the reachability of a given
condition within a bounded number of steps.

Interpolants from proofs Given a pair of formulas (AA, B), such that A A
B is inconsistent, an interpolant for (A, B) is a formula A with the following
properties:

— A implies fl,
— AN B is unsatisfiable, and
— A refers only to the common symbols of A and B.

Here, “symbols” excludes symbols such as A and = that are part of the logic
itself. Craig showed that for first-order formulas, an interpolant always exists
for inconsistent formulas [5]. Of more practical interest is that, for certain proof
systems, an interpolant can be derived from a refutation of A A B in linear time.
For example, a purely propositional refutation of A A B using the resolution rule
can be translated to an interpolant in the form of a Boolean circuit having the
same structure as the proof [8,13].

In [11] it is shown that linear-size interpolants can be derived from refutations
in a first-order theory with uninterpreted function symbols and linear arithmetic.
This translation has the property that whenever A and B are quantifier-free, the
derived interpolant Ais also quantifier-free.* We will exploit this property in the
sequel.

Heuristically, the chief advantage of interpolants derived from refutations is
that they capture the facts that the prover derived about A in showing that A
is inconsistent with B. Thus, if the prover tends to ignore irrelevant facts and
focus on relevant ones, we can think of interpolation as a way of filtering out
irrelevant information from A.

For the purposes of this paper, we must extend the notion of interpolant
slightly. That is, given an indexed set of formulas A = {a4,...,a,} such that
/\ A is inconsistent, a symmetric interpolant for A is an indexed set of formulas

4 Note that the Craig theorem does not guarantee the existence of quantifier-free
interpolants. In general this depends on the choice of interpreted symbols in the
logic.



A= {@1,...,a,} such that each a; implies d;, and A A is inconsistent, and each
a; is over the symbols common to a; and A\ a;. We can construct a symmetric
interpolant for A from a refutation of A A by simply letting a,; be the interpolant
derived from the given refutation for the pair (a;, A A\ a;). As long as all the
individual interpolants are derived from the same proof, we are guaranteed that
their conjunction is inconsistent. In the sequel, if Aisa symmetric interpolant
for A, and the elements of A are not explicitly indexed, we will use the notation

A(a;) to refer to d;.

3 Transition relation approximation

Because of the expense of image computation in symbolic model checking, it is
often beneficial to abstract the transition relation before model checking, remov-
ing information that is not relevant to the property to be proved. Some examples
of techniques for this purpose are [4,12].

In this paper, we introduce a method of approximating the transition relation
using bounded model checking and symmetric interpolation. Given a transition
system (I,T) and a state formula ¢ that we wish to prove unreachable, we will
use interpolation to refine an approximation T of the transition relation T, such
that 7 implies 7". The initial approximation is just 7' = TRUE.

We begin the refinement loop by attempting to verify the unreachabilty of
in the approximate system (I, T), using an appropriate model checking algo-
rithm. If ¢ is found to be unreachable in (I, T), we know it is unreachable in
the stronger system (I,T"). Suppose, on the other hand that % is found to be
k-reachable in (I, 7). It may be that in fact ¢ is k-reachable in (I,T), or it may
be that 7 is simply too weak an approximation to refute this. To find out, we
will use bounded model checking.

That is, we construct the following set of formulas:

A= {I<0>,T<0> T<k*1>71/,(k>}

Note that A A is exactly the bounded model checking formula that characterizes
k-reachability of ¢ in (I,7T"). We use a decision procedure to determine satisfi-
ability of A A. If it is satisfiable, 1) is reachable and we are done. If not, we
obtain from the decision procedure a refutation of A A. From this, we extract a
symmetric interpolant A. Notice that for each i in 0...k —1, A(T) is a for-
mula implied by 7 the transition formula shifted to time i. Let us shift these
formulas back to time 0, thus converting them to transition formulas. That is,
fori=0...k—1, let:
7, = (A7)

where we use ¢{~% to denote removal of i primes from ¢, when feasible. We will
call these formulas the transition interpolants. From the properties of symmetric
interpolants, we know the bounded model checking formula

To AT A BT Ay,



T — TRUE
repeat
if ¢ unreachable in (I, T), return “unreachable”
else, if ¥ reachable in k steps in (I, T)
A (IO, 70 kD) gy
if /\ A satisfiable, return “reachable in k steps”
else
A — ITp(A)
T T ANy (ATD) D
end repeat

Fig. 1. Interpolation-based transition approximation loop. Here, ITP is a function that
computes a symmetric interpolant for a set of formulas.

is unsatisfiable. Thus we know that the conjunction of the transition inter-
polants A\, T; admits no path of k steps from I to 1. We now compute a refined
approximation T=TA\ A T;. This becomes our approximation T in the next
iteration of the loop. This procedure is summarized in Figure 1. Notice that at
each iteration, the refined approximation 7" is strictly stronger than T, since T
allows a counterexample of k steps, but 7' does not. Thus, for finite-state Sys-
tems, the loop must terminate. This is simply because we cannot strengthen a
formula with a finite number of models infinitely.

The approximate transition formula 7' has two principle advantages over T.
First, it contains only facts about the transition relation that were derived by
the prover in resolving the bounded model checking problem. Thus it is in some
sense an abstraction of T' relative to . Second, T contains only state-holding
symbols. We will say that a symbol s € S is state-holding in (I, T) when s occurs
in I, or s’ occurs in T'. In the bounded model checking formula, the only symbols
in common between T and the remainder of the formula are of the form s{?
or s{*t1) where s is state-holding. Thus, the transition interpolants T; contain
only state-holding symbols and their primed versions.

The elimination of the non-state-holding symbols by interpolation has two
potential benefits. First, in hardware verification there are usually many non-
state-holding symbols representing inputs of the system. These symbols con-
tribute substantially to the cost of the image computation in symbolic model
checking. Second, for this paper, the chief benefit is in the case when the state-
holding symbols are all propositional (i.e., they are propositional constants). In
this case, even if the transition relation 7T is a first-order formula, the approxi-
mation 7' is a propositional formula. The individual variables and function sym-
bols are eliminated by interpolation. Thus we can apply well-developed Boolean
methods for symbolic model checking to the approximate system. In the next
section, we will apply this approach to predicate abstraction.



4 Application to predicate abstraction

Predicate abstraction [15] is a technique commonly used in software model check-
ing in which the state of an infinite-state system is represented abstractly by the
truth values of a chosen set of predicates P. The method computes the strongest
inductive invariant of the system expressible as a Boolean combination of these
predicates.

Let us fix a concrete transition system (I,7) and a finite set of state for-
mulas P that we will refer to simply as “the predicates”. We assume a finite
set V' C S of uninterpreted propositional symbols not occurring in I or T'. The
set V consists of a symbol v, for every predicate p € P. We will construct an
abstract transition system (I,T) whose states are the minterms over V. To re-
late the abstract and concrete systems, we define a concretization function ~.
Given a formula over V, v replaces every occurrence of a symbol v, with the
corresponding predicate p. Thus, if ¢ is a Boolean combination over V', v(¢) is
the same combination of the corresponding predicates in P.

For the sake of simplicity, we assume that the initial condition I is a Boolean
combination of the predicates. Thus we choose I so that y(I) = I. We define
the abstract transition relation T such that, for any two minterms s,t € 2V, we
have T'[s,t] exactly when ~(s) A T A v(t)" is consistent. In other words, there
is a transition from abstract state s to abstract state ¢ exactly when there is a
transition from a concrete state satisfying v(s) to a concrete state satisfying ~(¢).

We can easily show by induction on the number of steps that if a formula ¢
over V is unreachable in (I,T) then ~(v)) is unreachable in (I,7) (though the
converse does not hold). To allow us to check whether a given v is in fact
reachable in the abstract system, we can express the abstract transition relation
symbolically [9]. The abstract transition relation can be expressed as

T = ((/\peP(Up = p)) AT A (/\pep(p’ = v;))) L(Vuv)

where @ | W denotes the “hiding” of non-W symbols in @ by renaming them
to fresh symbols in S. Hiding the concrete symbols in this way takes the place
of existential quantification. Notice that, under this definition, the state-holding
symbols of (I,T) are exactly V. Moreover, for any two minterms s,t € 2V, the
formula s AT At is consistent exactly when v(s) AT A~v(t)’ is consistent. Thus,
T characterizes exactly the transitions of our abstract system.

To determine whether v is reachable in this system using the standard “sym-
bolic” approach, we would compute the reachable states R of the system as the
limit of the following recurrence:

Ro=1T
Riy1 =R;V Sprf(Ri)
The difficulty here is to compute the image sp;. We cannot apply standard

propositional methods for image computation, since the transition formula 7T is
not propositional. We can compute sp4(¢) as the disjunction of all the minterms



s € 2V such that 9 AT A s’ is consistent. However, this is quite expensive in prac-
tice, since it requires an exponential number of calls to a theorem prover. In [9],
this is avoided by translating 7' into a propositional formula that is equisatisfi-
able with T over V U V. This makes it possible to use well developed Boolean
image computation methods to compute the abstract strongest postcondition.
Nonetheless, because the translation introduces a large number of free propo-
sitional variables, the standard approaches to image computation using Binary
Decision Diagrams (BDD’s) were found to be inefficient. Alternative methods
based on enumerating the satisfiable assignments using a SAT solver were found
to be more effective, at least for small numbers of predicates. However, this
method is still essentially enumerative. Its primary advantage is that informa-
tion learned by the solver during the generation of one satisfying assignment can
be reused in the next iteration.

Here, rather than attempting to compute images exactly in the abstract
system, we will simply observe that state-holding symbols of the abstraction
(I, T) are all propositional. Thus, the interpolation-based transition relation ap-
proximation method of the previous section reduces the transition relation to
a purely propositional formula. Moreover, it does this without introducing ex-
traneous Boolean variables. Thus, we can apply standard BDD-based model
checking methods to the approximated system (I, T) without concern that non-
state-holding Boolean variables will cause a combinatorial explosion. Finally,
termination of the approximation loop is guaranteed because the abstract state
space is finite.

5 Software model checking

In model checking sequential deterministic programs, we can make some signif-
icant optimizations in the above method.

Path-based approximation The first optimization is to treat the program
counter explicitly, rather than modeling it as a symbolic variable. The main
advantage of this is that it will allow us to apply bounded model checking only
to particular program paths (i.e., sequences of program locations) rather than
to the program as a whole.

We will say that a program II is a pair (L, R), where L is a finite set of
locations, and R is a finite set of operations. An operation is a triple (I,7,1")
where T is a transition formula, [ € L is the entry location of the statement, and
" € L is the exit location of the statement.

A path of program II from location [y € L to location [, € L is a sequence
S Rkil, of the form (lo,To, ll)(ll,Tl, 12) ce (lk—lka—la lk) We say that the
path is feasible when there exists a sequence of states og--- oy such that, for
all 0 < i < k, we have T;[0;,0;41]. The reachability problem is to determine
whether program IT has a feasible path from a given initial location Iy to a given
final location If.



As in the previous section, we assume a fixed set of predicates P, and a
corresponding set of uninterpreted propositional symbols V. Using these, we
construct an abstract program IT = (L, R). For any operation r = (I, T,1’), let
the abstract operation 7 be (I,T,1'), where, as before

T = ((/\peP(UP — p)) AT A (/\pep(p/ — U;))) Lvuvh)

The abstract operation set R is then {F | 7 € R}. We can easily show that if
a path rq - - -7rx_1 is feasible, then the corresponding abstract path 7o ---7_1 is
also feasible. Thus if a given location I; is unreachable from Iy in the abstract
program, it is unreachable from [y in the concrete program.

Now we can apply the interpolation-based approximation approach to pro-
grams. We will build an approximate program II = (L, R), where R consists of
an operation # = (I,T,1') for every 7 = (I, T,I') in R, such that T implies T, and
T is over VU V. Initially, every T is just TRUE.

At every step of the iteration, we use standard model checking methods to
determine whether the approximation IT has a feasible path from [y to ;. We can
do this because the transition formulas 7" are all propositional. If there is no such
path, then [y is not reachable in the concrete program and we are done. Suppose
on the other hand that there is such a path 7 = 7g-- - 7ip_1. Let @ = 79 - - - T _1
be the corresponding path of II. We can construct a bounded model checking
formula to determine the feasibility of this path. Using the notation T'(r) to
denote the T' component of an operation r, let

A={T(#)" |i€0.. . k—1}

The conjunction A A is consistent exactly when the abstract path 7 is feasible.
Thus, if /A A is consistent, the abstraction does not prove unreachability of I;
and we are done. If it is inconsistent, we construct a symmetric interpolant A
for A. We extract transition interpolants as follows:

T; = (A(T(m;) ")) =2

Each of these is implied by the T'(7;), the transition formula of the corresponding
abstract operation. We now strengthen our approximate program II using these
transition interpolants. That is, for each abstract operation 7 € R, the refined
approximation is 7 = (I, T(r),l’) where

T(?*)iT(f')/\</\{Ti\7‘ri:F, ieO...kfl})

In other words, we constrain each approximate operation 7 by the set of tran-
sition interpolants for the occurrences of 7 in the abstract path 7. The refined
approximate program is thus (L, R), where R = {7 | 7 € R}. From the inter-
polant properties, we can easily show that the refined approximate program does
not admit a feasible path corresponding to 7.

We continue in this manner until either the model checker determines that
the approximate program IT has no feasible path from Iy to ¢, or until bounded



statement ‘transition interpolant

alz] —y (z=2)" = (a[z] =y)'
gyl (a] 2y = (als] =y — 1)) A (& = 2 = 2 = 2)
assume z = x (a2l =y—1=(a[z]=y—1))Az ==

assume afz] Zy—1 l|a[z]#y—1

Fig. 2. An infeasible program path, with transition interpolants. The statement “as-
sume ¢” is a guard. It aborts when ¢ is false. In the transition interpolants, we have
replaced v, with p for clarity, but in fact these formulas are over V U V".

model checking determines that the abstract program IT does have such a feasible
path. This process must terminate, since at each step I is strengthened, and we
cannot strengthen a finite set of propositional formulas infinitely.

The advantage of this approach, relative to that of section 3, is that the
bounded model checking formula A A only relates to a single program path. In
practice, the refutation of a single path using a decision procedure is considerably
less costly than the refutation of all possible paths of a given length.

As an example of using interpolation to compute an approximate program,
Figure 2 shows a small program with one path, which happens to be infeasible.
The method of [7] chooses the predicates x = z, a[z] = y and a[z] = y — 1
to represent the abstract state space. Next to each operation in the path is
shown the transition interpolant T; that was obtained for that operation. Note
that each transition interpolant is implied by the semantics of the corresponding
statement, and that collectively the transition interpolants rule out the program
path (the reader might wish to verify this). Moreover, the transition interpolant
for the first statement, a[z] < y, is * = z = a[z] = y. This is a disjunction and
therefore cannot be inferred by predicate image techniques that use the Cartesian
or Boolean programs approximations. In fact, the BLAST model checker cannot
rule out this program path. However, using transition interpolants, we obtain a
transition relation approximation that proves the program has no feasible path
from beginning to end.

Modeling with weakest precondition A further optimization that we can
use in the case of deterministic programs is that we can express the abstract
transition formulas T in terms of the weakest precondition operator. That is,
if T is deterministic, the abstract transition formula T is satisfiability equivalent
over VUV’ to:

(Aver(vp <= 1)) A-wpr(Farse) A (A,ep(vy <= wpr(p)))

Thus, if we can symbolically compute the weakest precondition operator for the
operations in our programming language, we can use this formula in place of T
as the abstract transition formula. In this way, the abstract transition formula
is localized to just those program variables that are related in some way to
predicates P. In particular, if 7 is an assignment to a program variable not
occurring in P, then we will have v; <= p, for every predicate in P.



A hybrid approach We can combine transition interpolants with other meth-
ods of approximating the transition relation or the image. For example, given
a set of propositions V, the strongest Cartesian postcondition scpp(¢) of a for-
mula ¢ with respect to a transition formula T is the strongest cube v over V'
such that ¢ A T implies ¢’ (a cube is a conjunction of literals). In computing
the image of a state formula ¢ with respect to an operation 7 of the approxi-
mate program, we can strengthen the result by conjoining it with the strongest
Cartesian postcondition with respect to the corresponding abstract operation 7.
Thus, the hybrid image of ¢ with respect to transition 7 is:

hiz (¢) = spys) (@) A scppir (6)

This set is still an over-approximation of the exact abstract image spT(F)(gé), SO
it is sound to use the hybrid image in the reachability computation. This may
result in fewer iterations of the refinement loop.

Interpolant strengthening In preliminary tests of the method, we found
that transition interpolants derived from proofs by the method of [10] were
often unnecessarily weak. For example, we might obtain (p A q) = (p' A ¢)
when the stronger (p = p') A (¢ = ¢') could be proved. This slowed convergence
substantially. For this reason, we use here a modified version of the method of [10]
that produces stronger interpolants. This method is sketched in the appendix.

6 Experiments

We now experimentally compare the method of the previous section with a
method due to Das and Dill [6]. This method refines an approximate transi-
tion relation by analyzing counterexamples from the approximate system to
infer a refinement that rules out each counterexample. More precisely, a coun-
terexample of the approximate program (L, R) is an alternating sequence m =
00Fg07 - - - T_10k, where each o; is a minterm over V, each #; is an operation
in R, I(ro) = lo, I'(rk_1) = s, and for all 0 < i < k, we have T(#;)[0, 0i11]-
This induces a set of transition minterms, t; = o; A UZ’-_H, for 0 < i < k. Note
that each t; is by definition consistent with T'(7;).

To refine the approximate program, we test each ¢; for consistency with the
corresponding abstract transition formula T'(7;). If it is inconsistent, the coun-
terexample is false (due to over-approximation). Using an incremental decision
procedure, we then greedily remove literals from ¢; that can be removed while
retaining inconsistency with 7'(7;). The result is a minimal (but not minimum)
cube that is inconsistent with T'(7;). The negation of this cube is implied by T'(7;),
s0 we use it to strengthen corresponding approximate transition formula T'(7;).
Since more than one transition minterm may be inconsistent, we may refine sev-
eral approximate operations in this way (however if none are inconsistent, we
have found a true counterexample of the abstraction).

Both approximation refinement procedures are embedded as subroutines of
the BLAST software model checker. Whenever the model checker finds a path
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Fig. 3. Comparison of the Das/Dill and interpolation-based methods as to run time
and number of refinement steps.

from an initial state to a failure state in the approximate program, it calls the re-
finement procedure. If refinement fails because the abstraction does not prove the
property, the procedure of [7] is used to add predicates to the abstraction. Since
both refinement methods are embedded in the same model checking procedure
and use the same decision procedure, we can obtain a fairly direct comparison.

Our benchmarks are a set of C programs with assertions embedded to test
properties relating to the contents of arrays.® Some of these programs were
written expressly as tests. Others were obtained by adding assertions to a sample
device driver for the Linux operating system from a textbook [14]. Most of the
properties are true. None of the properties can be verified or refuted by BLAST
without using a refinement procedure, due to its use of the Cartesian image.

Figure 3 shows a comparison in terms of run time (on a 3GHz Intel Xeon pro-
cessor) and number of refinement steps. The latter includes refinement steps that
fail, causing predicates to be added. Run time includes model checking, refine-
ment, and predicate selection. Each point represents a single benchmark prob-
lem. The X axis represents the Das/Dill method and the Y axis the interpolation-
based method. Points below the heavy diagonal represent wins for the interpo-
lation method, while points below the light diagonal represent improvements of
an order of magnitude (note in one case a run-time improvement of two orders
of magnitude is obtained). Figure 4 shows the same comparison with the hybrid
image computation. Here, the reduction in number of refinement steps is less
pronounced, since less information must be learned by refinement.

The lower number of refinement steps required by interpolation method is
easily explained. The Das/Dill method uses a specific counterexample and does
not consider the property being verified. Thus it can easily generate refinements
not relevant to proving the property. The interpolation procedure considers only
the program path, and generates facts relevant to proving the property for that

% Available at http://uww-cad.eecs.berkeley.edu/ kenmcmil/cavO5data.tar.gz
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Fig. 4. Comparison of the Das/Dill and interpolation-based refinement methods, using
the hybrid image.
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Fig. 5. Comparison of the interpolation-based refinement methods, without and with
hybrid image.

path. Thus, it tends to generate more relevant refinements, and as a result it
converges in fewer refinements.

Figure 5 compares the performance the interpolation-based method with and
without hybrid image computation. Though the hybrid method can reduce the
number of refinement steps, it sometimes increases the run time due to the cost
of computing the Cartesian image using a decision procedure.

7 Conclusions

We have described a method that combines bounded model checking and interpo-
lation to approximate the transition relation of a system with respect to a given
safety property. The method is extensible to liveness properties of finite-state
systems, in the same manner as the method of [12]. When used with predicate
abstraction, the method eliminates the individual variables and function sym-



bols from the approximate transition formula, leaving it in a propositional form.
Unlike the method of [9], it does this without introducing extraneous Boolean
variables. Thus, we can apply standard symbolic model checking methods to the
approximate system.

For a set of benchmark programs, the method was found to converge more
rapidly that the counterexample-based method of Das and Dill, primarily due
to the prover’s ability to focus the proof, and therefore the refinements, on facts
relevant to the property. The benchmark programs used here are small (the
largest being a sample device driver from a textbook), and the benchmark set
contains only 19 problems. Thus we cannot draw broad conclusions about the
applicability of the method. However, the experiments do show a potential to
speed the convergence of transition relation refinement for real programs. Our
hope is that this will make it easier to model check data-oriented rather than
control-oriented properties of software.
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A Computing strong interpolants

The experiments presented in this paper use a technique of strengthening the
interpolant obtained from a resolution proof. Although a full description of this
method is beyond the scope of this paper, we briefly sketch it here, since it is
important in practice to compute strong transition interpolants. As an example
of this, notice that in Figure 2, the transition interpolant for the second step is
a conjunction of disjunctions:

(alz) =y = (@) =y - D) A ((w=2) > o =2)

However, other valid interpolants are possible. For example, we might have ob-
tained a weaker version:

(x=2) = (2 =2A(alz] =y = (alz] =y — 1))

This formula has been weakened by pulling one disjunction outside of the con-
junction, though it is still sufficient to rule out this particular program path.
The stronger interpolant has the advantage that it may be more useful in ruling
out other program paths in a more complex program. Unfortunately, either of
these interpolants might be obtained in practice, depending on the exact order
of resolution steps generated by the prover. The order of resolution steps gener-
ated by a SAT solver depends on the order in which implications are propagated
by the Boolean constraint propagation (BCP) procedure, and is quite arbitrary.
Thus, it is useful in practice to try to adjust the proof before computing an
interpolant, in such a way that a stronger interpolant results.

To understand this process in detail, it is necessary to understand the pro-
cess of generating interpolants from resolution proofs, as described in [10]. A full
treatment of this subject is beyond the scope of this paper. However, to gain
some intuition about the problem, it is only necessary to know two things about
such interpolants. First, the interpolant for (A, B) is a Boolean circuit whose
structure mirrors the structure of the resolution proof that refutes A A B. Sec-
ond, resolutions on local atoms (those not occurring in B) generate “or” gates,
while resolutions on global atoms (those occurring in B) generate “and” gates.
Thus, if we want to generate a strong interpolant formula, it would be best to
move the local resolutions toward the hypotheses of the proof, and the global
resolutions toward the conclusion. This effectively moves the “or” gates toward
the inputs of the interpolant circuit, and the “and” gates toward the output,
thus strengthening the interpolant.

We can do this using the simple rewrite rules on resolution proofs shown in
Figure 6. These rules raise a resolution on ¢ above a resolution on p, moving
one antecedent inside the other. There are two rules shown, to handle the case
when g occurs in either one or both of the antecedents of the resolution on p. We
also allow all the rules obtainable by commuting the left and right antecedents
of any resolution step, and inverting the polarity of p or ¢q. By applying these
rewrites systematically, we can in principle move all of the resolutions on local
atoms to the top of the proof, and all the resolutions on global atoms to the
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Fig. 6. Rules for raising a resolution. Here, [©] stands for any proof of clause ©.

bottom. This would result in an interpolant in conjunctive normal form (CNF).
However, it may also result in an exponential expansion of the proof. Instead,
we will take a limited approach that keeps the interpolant linear in the size of
the original resolution proof, but may not yield an interpolant in CNF.

First, we must first take into account that the proof is a DAG and not a tree.
Thus, raising resolution step s inside step ¢ could result in the loss of shared
structure, if ¢ is referenced more than once in the proof. To prevent this, we
first mark all the resolution steps in the proof whose consequent is used as the
antecedent in more than one subsequent step. We then traverse the proof in a
topological order, from antecedents to consequents. Each time we encounter a
resolution step s on a local atom ¢, we use the proof rewrite rules to raise that
resolution step until it reaches either a hypothesis or a marked resolution step.
Note that in the case of the second rewrite rule, one resolution on ¢ becomes
two. Thus, we are increasing the size of the proof. However, the final number
of occurrences of a step s is no more than the number of occurrences of —gq in
the the original proof that were resolved by s. Thus, the number of resolutions
we obtain after raising all the resolutions on local atoms is linear in the size of
the original proof (if we measure it by the number of literals it contains). As a
result the interpolant we obtain from the rewritten proof is still linear in size of
the original proof.

Note that each time we “raise” a resolution on ¢, we have two choices. The
rules shown raise the proof of the antecedent containing ¢. However, we can
equally well raise the other antecedent, which contains —¢q. As it turns out, for
proofs generated by a SAT solver, there is an obvious way to make this choice.
These proofs tend to consist of long chains of resolutions in which most of the
“right-hand” antecedents are hypotheses and not resolutions. These chains are
the result of Boolean constraint propagation. The rare case in which a right-
hand antecedent is not a hypothesis is typically the result of the SAT solver
backtracking out of a decision. Because of this, the rule that raises the right-
hand antecedent is usually the only one which applies.



There are two reasons why, after rewriting the proof, we may still have global
resolutions above local resolutions (and thus “and” gates inside “or” gates in the
interpolant). Most obviously, the proof may have been a DAG, and thus raising
some local resolution may have been blocked at a marked step. The other is
that when we raise resolution step s, we raise the proof of one antecedent of s.
This may itself contain global resolutions (though as mentioned, this is rare in
practice). We might imagine continuing by raising each resulting instance of s
into its other antecedent. However, the resulting loss of structure sharing would
cause an exponential expansion in the proof DAG. In practice, we have found
that the limited rewriting procedure outlined here produces an interpolant in
CNF most of the time, producing a substantial improvement in the performance
of interpolation-based refinement over the basic procedure of [10].



